📄 jack.test.rd
字号:
\name{jack.test}\alias{jack.test}\alias{print.jacktest}\title{Jackknife approximate t tests of regression coefficients}\description{ Performes approximate t tests of regression coefficients based on jackknife variance estimates.}\usage{jack.test(object, ncomp = object$ncomp, use.mean = TRUE)\method{print}{jacktest}(x, P.values = TRUE, \dots)}\arguments{ \item{object}{an \code{mvr} object. A cross-validated model fitted with \code{jackknife = TRUE}.} \item{ncomp}{the number of components to use for estimating the variances} \item{use.mean}{logical. If \code{TRUE} (default), the mean coefficients are used when estimating the (co)variances; otherwise the coefficients from a model fitted to the entire data set. See \code{\link{var.jack}} for details.} \item{x}{an \code{jacktest} object, the result of \code{jack.test}.} \item{P.values}{logical. Whether to print \eqn{p} values (default).} \item{\dots}{Further arguments sent to the underlying print function \code{\link{printCoefmat}}.}}\details{ \code{jack.test} uses the variance estimates from \code{var.jack} to perform \eqn{t} tests of the regression coefficients. The resulting object has a print method, \code{print.jacktest}, which uses \code{\link{printCoefmat}} for the actual printing.}\value{ \code{jack.test} returns an object of class \code{"jacktest"}, with components \item{coefficients }{The estimated regression coefficients} \item{sd}{The square root of the jackknife variance estimates} \item{tvalues}{The \eqn{t} statistics} \item{df}{The `degrees of freedom' used for calculating \eqn{p} values} \item{pvalues}{The calculated \eqn{p} values} \code{print.jacktest} returns the \code{"jacktest"} object (invisibly).}\section{Warning}{ The jackknife variance estimates are known to be biased (see \code{\link{var.jack}}). Also, the distribution of the regression coefficient estimates and the jackknife variance estimates are unknown (at least in PLSR/PCR). Consequently, the distribution (and in particular, the degrees of freedom) of the resulting \eqn{t} statistics is unknown. The present code simply assumes a \eqn{t} distribution with \eqn{m - 1} degrees of freedom, where \eqn{m} is the number of cross-validation segments. Therefore, the resulting \eqn{p} values should not be used uncritically, and should perhaps be regarded as mere indicator of (non-)significance. Finally, also keep in mind that as the number of predictor variables increase, the problem of multiple tests increases correspondingly.}\references{ Martens H. and Martens M. (2000) Modified Jack-knife Estimation of Parameter Uncertainty in Bilinear Modelling by Partial Least Squares Regression (PLSR). \emph{Food Quality and Preference}, \bold{11}, 5--16.}\author{Bj鴕n-Helge Mevik}\seealso{\code{\link{var.jack}}, \code{\link{mvrCv}}}\examples{data(oliveoil)mod <- pcr(sensory ~ chemical, data = oliveoil, validation = "LOO", jackknife = TRUE)jack.test(mod, ncomp = 2)}\keyword{htest}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -