⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 jack.test.rd

📁 做主成分回归和偏最小二乘回归
💻 RD
字号:
\name{jack.test}\alias{jack.test}\alias{print.jacktest}\title{Jackknife approximate t tests of regression coefficients}\description{  Performes approximate t tests of regression coefficients  based on jackknife variance estimates.}\usage{jack.test(object, ncomp = object$ncomp, use.mean = TRUE)\method{print}{jacktest}(x, P.values = TRUE, \dots)}\arguments{  \item{object}{an \code{mvr} object.  A cross-validated model fitted    with \code{jackknife = TRUE}.}  \item{ncomp}{the number of components to use for estimating the variances}  \item{use.mean}{logical.  If \code{TRUE} (default), the mean    coefficients are used when estimating the (co)variances; otherwise    the coefficients from a model fitted to the entire data set.  See    \code{\link{var.jack}} for details.}  \item{x}{an \code{jacktest} object, the result of \code{jack.test}.}  \item{P.values}{logical.  Whether to print \eqn{p} values (default).}  \item{\dots}{Further arguments sent to the underlying print function    \code{\link{printCoefmat}}.}}\details{  \code{jack.test} uses the variance estimates from \code{var.jack} to  perform \eqn{t} tests of the regression coefficients.  The resulting object  has a print method, \code{print.jacktest}, which uses  \code{\link{printCoefmat}} for the actual printing.}\value{  \code{jack.test} returns an object of class \code{"jacktest"}, with components  \item{coefficients }{The estimated regression coefficients}  \item{sd}{The square root of the jackknife variance estimates}  \item{tvalues}{The \eqn{t} statistics}  \item{df}{The `degrees of freedom' used for calculating \eqn{p}    values}  \item{pvalues}{The calculated \eqn{p} values}  \code{print.jacktest} returns the \code{"jacktest"} object (invisibly).}\section{Warning}{  The jackknife variance estimates are known to be biased (see  \code{\link{var.jack}}).  Also, the distribution of the regression coefficient estimates and the  jackknife variance estimates are unknown (at least in PLSR/PCR).  Consequently, the distribution (and in particular, the degrees of  freedom) of the resulting \eqn{t} statistics is unknown.  The present code  simply assumes a \eqn{t} distribution with \eqn{m - 1} degrees of  freedom, where \eqn{m} is the number of cross-validation segments.  Therefore, the resulting \eqn{p} values should not be used  uncritically, and should perhaps be regarded as mere indicator of  (non-)significance.  Finally, also keep in mind that as the number of predictor variables  increase, the problem of multiple tests increases correspondingly.}\references{  Martens H. and Martens M. (2000) Modified Jack-knife Estimation of  Parameter Uncertainty in Bilinear Modelling by Partial Least Squares  Regression (PLSR).  \emph{Food Quality and Preference}, \bold{11}, 5--16.}\author{Bj鴕n-Helge Mevik}\seealso{\code{\link{var.jack}}, \code{\link{mvrCv}}}\examples{data(oliveoil)mod <- pcr(sensory ~ chemical, data = oliveoil, validation = "LOO", jackknife = TRUE)jack.test(mod, ncomp = 2)}\keyword{htest}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -