⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 simpls.fit.rd

📁 做主成分回归和偏最小二乘回归
💻 RD
字号:
%% $Id: simpls.fit.Rd 132 2007-08-24 09:21:05Z bhm $\encoding{latin1}\name{simpls.fit}\alias{simpls.fit}\title{Sijmen de Jong's SIMPLS}\description{Fits a PLSR model with the SIMPLS algorithm.}\usage{simpls.fit(X, Y, ncomp, stripped = FALSE, \dots)}\arguments{  \item{X}{a matrix of observations.  \code{NA}s and \code{Inf}s are not    allowed.}   \item{Y}{a vector or matrix of responses.  \code{NA}s and \code{Inf}s    are not allowed.}   \item{ncomp}{the number of components to be used in the    modelling.}  \item{stripped}{logical.  If \code{TRUE} the calculations are stripped    as much as possible for speed; this is meant for use with    cross-validation or simulations when only the coefficients are    needed.  Defaults to \code{FALSE}.}  \item{\dots}{other arguments.  Currently ignored.}}\details{This function should not be called directly, but through  the generic functions \code{plsr} or \code{mvr} with the argument  \code{method="simpls"}.  SIMPLS is much faster than the NIPALS algorithm,  especially when the number of X variables increases, but gives  slightly different results in the case of multivariate Y.  SIMPLS truly  maximises the covariance criterion.  According to de Jong, the standard  PLS2 algorithms lie closer to ordinary least-squares regression where  a precise fit is sought; SIMPLS lies closer to PCR with stable  predictions.}\value{A list containing the following components is returned:  \item{coefficients}{an array of regression coefficients for 1, \ldots,    \code{ncomp} components.  The dimensions of \code{coefficients} are    \code{c(nvar, npred, ncomp)} with \code{nvar} the number    of \code{X} variables and \code{npred} the number of variables to be    predicted in \code{Y}.}  \item{scores}{a matrix of scores.}  \item{loadings}{a matrix of loadings.}  \item{Yscores}{a matrix of Y-scores.}  \item{Yloadings}{a matrix of Y-loadings.}  \item{projection}{the projection matrix used to convert X to scores.}  \item{Xmeans}{a vector of means of the X variables.}  \item{Ymeans}{a vector of means of the Y variables.}  \item{fitted.values}{an array of fitted values.  The dimensions of    \code{fitted.values} are \code{c(nobj, npred, ncomp)} with    \code{nobj} the number samples and \code{npred} the number of    Y variables.}  \item{residuals}{an array of regression residuals.  It has the same    dimensions as \code{fitted.values}.}  \item{Xvar}{a vector with the amount of X-variance explained by each    number of components.}  \item{Xtotvar}{Total variance in \code{X}.}  If \code{stripped} is \code{TRUE}, only the components  \code{coefficients}, \code{Xmeans} and \code{Ymeans} are returned.}\references{  de Jong, S. (1993) SIMPLS: an alternative approach to partial least  squares regression.  \emph{Chemometrics and Intelligent Laboratory Systems},  \bold{18}, 251--263.}\author{Ron Wehrens and Bj鴕n-Helge Mevik}\seealso{  \code{\link{mvr}}  \code{\link{plsr}}  \code{\link{pcr}}  \code{\link{kernelpls.fit}}  \code{\link{widekernelpls.fit}}  \code{\link{oscorespls.fit}}}\keyword{regression}\keyword{multivariate}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -