⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 oscorespls.fit.rd

📁 做主成分回归和偏最小二乘回归
💻 RD
字号:
%% $Id: oscorespls.fit.Rd 132 2007-08-24 09:21:05Z bhm $\encoding{latin1}\name{oscorespls.fit}\alias{oscorespls.fit}\title{Orthogonal scores PLSR}\description{Fits a PLSR model with the orthogonal scores algorithm(aka the NIPALS algorithm).}\usage{oscorespls.fit(X, Y, ncomp, stripped = FALSE,               tol = .Machine$double.eps^0.5, \dots)}\arguments{  \item{X}{a matrix of observations.  \code{NA}s and \code{Inf}s are not    allowed.}   \item{Y}{a vector or matrix of responses.  \code{NA}s and \code{Inf}s    are not allowed.}   \item{ncomp}{the number of components to be used in the    modelling.}  \item{stripped}{logical.  If \code{TRUE} the calculations are stripped    as much as possible for speed; this is meant for use with    cross-validation or simulations when only the coefficients are    needed.  Defaults to \code{FALSE}.}  \item{tol}{numeric.  The tolerance used for determining convergence in    multi-response models.}  \item{\dots}{other arguments.  Currently ignored.}}\details{This function should not be called directly, but through  the generic functions \code{plsr} or \code{mvr} with the argument  \code{method="oscorespls"}.  It implements the orthogonal scores  algorithm, as described in \cite{Martens and N鎠 (1989)}.  This is one  of the two \dQuote{classical}  PLSR algorithms, the other being the orthogonal loadings algorithm.}\value{A list containing the following components is returned:  \item{coefficients}{an array of regression coefficients for 1, \ldots,    \code{ncomp} components.  The dimensions of \code{coefficients} are    \code{c(nvar, npred, ncomp)} with \code{nvar} the number    of \code{X} variables and \code{npred} the number of variables to be    predicted in \code{Y}.}  \item{scores}{a matrix of scores.}  \item{loadings}{a matrix of loadings.}  \item{loading.weights}{a matrix of loading weights.}  \item{Yscores}{a matrix of Y-scores.}  \item{Yloadings}{a matrix of Y-loadings.}  \item{projection}{the projection matrix used to convert X to scores.}  \item{Xmeans}{a vector of means of the X variables.}  \item{Ymeans}{a vector of means of the Y variables.}  \item{fitted.values}{an array of fitted values.  The dimensions of    \code{fitted.values} are \code{c(nobj, npred, ncomp)} with    \code{nobj} the number samples and \code{npred} the number of    Y variables.}  \item{residuals}{an array of regression residuals.  It has the same    dimensions as \code{fitted.values}.}  \item{Xvar}{a vector with the amount of X-variance explained by each    number of components.}  \item{Xtotvar}{Total variance in \code{X}.}  If \code{stripped} is \code{TRUE}, only the components  \code{coefficients}, \code{Xmeans} and \code{Ymeans} are returned.}\references{  Martens, H., N鎠, T. (1989) \emph{Multivariate calibration.}  Chichester: Wiley.}\author{Ron Wehrens and Bj鴕n-Helge Mevik}\seealso{  \code{\link{mvr}}  \code{\link{plsr}}  \code{\link{pcr}}  \code{\link{kernelpls.fit}}  \code{\link{widekernelpls.fit}}  \code{\link{simpls.fit}}}\keyword{regression}\keyword{multivariate}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -