📄 oscorespls.fit.rd
字号:
%% $Id: oscorespls.fit.Rd 132 2007-08-24 09:21:05Z bhm $\encoding{latin1}\name{oscorespls.fit}\alias{oscorespls.fit}\title{Orthogonal scores PLSR}\description{Fits a PLSR model with the orthogonal scores algorithm(aka the NIPALS algorithm).}\usage{oscorespls.fit(X, Y, ncomp, stripped = FALSE, tol = .Machine$double.eps^0.5, \dots)}\arguments{ \item{X}{a matrix of observations. \code{NA}s and \code{Inf}s are not allowed.} \item{Y}{a vector or matrix of responses. \code{NA}s and \code{Inf}s are not allowed.} \item{ncomp}{the number of components to be used in the modelling.} \item{stripped}{logical. If \code{TRUE} the calculations are stripped as much as possible for speed; this is meant for use with cross-validation or simulations when only the coefficients are needed. Defaults to \code{FALSE}.} \item{tol}{numeric. The tolerance used for determining convergence in multi-response models.} \item{\dots}{other arguments. Currently ignored.}}\details{This function should not be called directly, but through the generic functions \code{plsr} or \code{mvr} with the argument \code{method="oscorespls"}. It implements the orthogonal scores algorithm, as described in \cite{Martens and N鎠 (1989)}. This is one of the two \dQuote{classical} PLSR algorithms, the other being the orthogonal loadings algorithm.}\value{A list containing the following components is returned: \item{coefficients}{an array of regression coefficients for 1, \ldots, \code{ncomp} components. The dimensions of \code{coefficients} are \code{c(nvar, npred, ncomp)} with \code{nvar} the number of \code{X} variables and \code{npred} the number of variables to be predicted in \code{Y}.} \item{scores}{a matrix of scores.} \item{loadings}{a matrix of loadings.} \item{loading.weights}{a matrix of loading weights.} \item{Yscores}{a matrix of Y-scores.} \item{Yloadings}{a matrix of Y-loadings.} \item{projection}{the projection matrix used to convert X to scores.} \item{Xmeans}{a vector of means of the X variables.} \item{Ymeans}{a vector of means of the Y variables.} \item{fitted.values}{an array of fitted values. The dimensions of \code{fitted.values} are \code{c(nobj, npred, ncomp)} with \code{nobj} the number samples and \code{npred} the number of Y variables.} \item{residuals}{an array of regression residuals. It has the same dimensions as \code{fitted.values}.} \item{Xvar}{a vector with the amount of X-variance explained by each number of components.} \item{Xtotvar}{Total variance in \code{X}.} If \code{stripped} is \code{TRUE}, only the components \code{coefficients}, \code{Xmeans} and \code{Ymeans} are returned.}\references{ Martens, H., N鎠, T. (1989) \emph{Multivariate calibration.} Chichester: Wiley.}\author{Ron Wehrens and Bj鴕n-Helge Mevik}\seealso{ \code{\link{mvr}} \code{\link{plsr}} \code{\link{pcr}} \code{\link{kernelpls.fit}} \code{\link{widekernelpls.fit}} \code{\link{simpls.fit}}}\keyword{regression}\keyword{multivariate}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -