📄 stdize.rd
字号:
%% $Id: stdize.Rd 99 2006-10-04 10:54:35Z bhm $\encoding{latin1}\name{stdize}\alias{stdize}\alias{predict.stdized}\alias{makepredictcall.stdized}\title{Standardization of Data Matrices}\description{ Performs standardization (centering and scaling) of a data matrix.}\usage{stdize(x, center = TRUE, scale = TRUE)\method{predict}{stdized}(object, newdata, \dots)\method{makepredictcall}{stdized}(var, call)}\arguments{ \item{x, newdata}{numeric matrices. The data to standardize.} \item{center}{logical value or numeric vector of length equal to the number of coloumns of \code{x}.} \item{scale}{logical value or numeric vector of length equal to the number of coloumns of \code{x}.} \item{object}{an object inheriting from class \code{"stdized"}, normally the result of a call to \code{stdize}.} \item{var}{A variable.} \item{call}{The term in the formula, as a call.} \item{\dots}{other arguments. Currently ignored.}}\details{ \code{makepredictcall.stdized} is an internal utility function; it is not meant for interactive use. See \code{\link{makepredictcall}} for details. If \code{center} is \code{TRUE}, \code{x} is centered by subtracting the coloumn mean from each coloumn. If \code{center} is a numeric vector, it is used in place of the coloumn means. If \code{scale} is \code{TRUE}, \code{x} is scaled by dividing each coloumn by its sample standard deviation. If \code{scale} is a numeric vector, it is used in place of the standard deviations.}\value{ Both \code{stdize} and \code{predict.stdized} return a scaled and/or centered matrix, with attributes \code{"stdized:center"} and/or \code{"stdized:scale"} the vector used for centering and/or scaling. The matrix is given class \code{c("stdized", "matrix")}.}\author{Bj鴕n-Helge Mevik and Ron Wehrens}\note{ \code{stdize} is very similar to \code{\link[base]{scale}}. The difference is that when \code{scale = TRUE}, \code{stdize} divides the coloumns by their standard deviation, while \code{scale} uses the root-mean-square of the coloumns. If \code{center} is \code{TRUE}, this is equivalent, but in general it is not.}\seealso{\code{\link{mvr}}, \code{\link{pcr}}, \code{\link{plsr}}, \code{\link{msc}}, \code{\link[base]{scale}}}\examples{data(yarn)## Direct standardization:Ztrain <- stdize(yarn$NIR[yarn$train,])Ztest <- predict(Ztrain, yarn$NIR[!yarn$train,])## Used in formula:mod <- plsr(density ~ stdize(NIR), ncomp = 6, data = yarn[yarn$train,])pred <- predict(mod, newdata = yarn[!yarn$train,]) # Automatically standardized}\keyword{regression}\keyword{multivariate}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -