📄 kernelpls.fit.rd
字号:
%% $Id: kernelpls.fit.Rd 132 2007-08-24 09:21:05Z bhm $\encoding{latin1}\name{kernelpls.fit}\alias{kernelpls.fit}\title{Kernel PLS (Dayal and MacGregor)}\description{Fits a PLSR model with the kernel algorithm.}\usage{kernelpls.fit(X, Y, ncomp, stripped = FALSE, \dots)}\arguments{ \item{X}{a matrix of observations. \code{NA}s and \code{Inf}s are not allowed.} \item{Y}{a vector or matrix of responses. \code{NA}s and \code{Inf}s are not allowed.} \item{ncomp}{the number of components to be used in the modelling.} \item{stripped}{logical. If \code{TRUE} the calculations are stripped as much as possible for speed; this is meant for use with cross-validation or simulations when only the coefficients are needed. Defaults to \code{FALSE}.} \item{\dots}{other arguments. Currently ignored.}}\details{This function should not be called directly, but through the generic functions \code{plsr} or \code{mvr} with the argument \code{method="kernelpls"} (default). Kernel PLS is particularly efficient when the number of objects is (much) larger than the number of variables. The results are equal to the NIPALS algorithm. Several different forms of kernel PLS have been described in literature, e.g. by De Jong and Ter Braak, and two algorithms by Dayal and MacGregor. This function implements the fastest of the latter, not calculating the crossproduct matrix of X. In the Dyal & MacGregor paper, this is \dQuote{algorithm 1}.}\value{A list containing the following components is returned: \item{coefficients}{an array of regression coefficients for 1, \ldots, \code{ncomp} components. The dimensions of \code{coefficients} are \code{c(nvar, npred, ncomp)} with \code{nvar} the number of \code{X} variables and \code{npred} the number of variables to be predicted in \code{Y}.} \item{scores}{a matrix of scores.} \item{loadings}{a matrix of loadings.} \item{loading.weights}{a matrix of loading weights.} \item{Yscores}{a matrix of Y-scores.} \item{Yloadings}{a matrix of Y-loadings.} \item{projection}{the projection matrix used to convert X to scores.} \item{Xmeans}{a vector of means of the X variables.} \item{Ymeans}{a vector of means of the Y variables.} \item{fitted.values}{an array of fitted values. The dimensions of \code{fitted.values} are \code{c(nobj, npred, ncomp)} with \code{nobj} the number samples and \code{npred} the number of Y variables.} \item{residuals}{an array of regression residuals. It has the same dimensions as \code{fitted.values}.} \item{Xvar}{a vector with the amount of X-variance explained by each number of components.} \item{Xtotvar}{Total variance in \code{X}.} If \code{stripped} is \code{TRUE}, only the components \code{coefficients}, \code{Xmeans} and \code{Ymeans} are returned.}\references{ de Jong, S. and ter Braak, C. J. F. (1994) Comments on the PLS kernel algorithm. \emph{Journal of Chemometrics}, \bold{8}, 169--174. Dayal, B. S. and MacGregor, J. F. (1997) Improved PLS algorithms. \emph{Journal of Chemometrics}, \bold{11}, 73--85.}\author{Ron Wehrens and Bj鴕n-Helge Mevik}\seealso{ \code{\link{mvr}} \code{\link{plsr}} \code{\link{pcr}} \code{\link{widekernelpls.fit}} \code{\link{simpls.fit}} \code{\link{oscorespls.fit}}}\keyword{regression}\keyword{multivariate}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -