⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 kernelpls.fit.rd

📁 做主成分回归和偏最小二乘回归
💻 RD
字号:
%% $Id: kernelpls.fit.Rd 132 2007-08-24 09:21:05Z bhm $\encoding{latin1}\name{kernelpls.fit}\alias{kernelpls.fit}\title{Kernel PLS (Dayal and MacGregor)}\description{Fits a PLSR model with the kernel algorithm.}\usage{kernelpls.fit(X, Y, ncomp, stripped = FALSE, \dots)}\arguments{  \item{X}{a matrix of observations.  \code{NA}s and \code{Inf}s are not    allowed.}   \item{Y}{a vector or matrix of responses.  \code{NA}s and \code{Inf}s    are not allowed.}   \item{ncomp}{the number of components to be used in the    modelling.}  \item{stripped}{logical.  If \code{TRUE} the calculations are stripped    as much as possible for speed; this is meant for use with    cross-validation or simulations when only the coefficients are    needed.  Defaults to \code{FALSE}.}  \item{\dots}{other arguments.  Currently ignored.}}\details{This function should not be called directly, but through  the generic functions \code{plsr} or \code{mvr} with the argument  \code{method="kernelpls"} (default).  Kernel PLS is particularly efficient   when the number of objects is (much) larger than the number of  variables.  The results are equal to the NIPALS algorithm.  Several  different forms of kernel PLS have been described in literature, e.g.  by De Jong and Ter Braak, and two algorithms by Dayal and  MacGregor.  This function implements the  fastest of the latter, not calculating the crossproduct matrix of  X.  In the Dyal & MacGregor paper, this is \dQuote{algorithm 1}.}\value{A list containing the following components is returned:  \item{coefficients}{an array of regression coefficients for 1, \ldots,    \code{ncomp} components.  The dimensions of \code{coefficients} are    \code{c(nvar, npred, ncomp)} with \code{nvar} the number    of \code{X} variables and \code{npred} the number of variables to be    predicted in \code{Y}.}  \item{scores}{a matrix of scores.}  \item{loadings}{a matrix of loadings.}  \item{loading.weights}{a matrix of loading weights.}  \item{Yscores}{a matrix of Y-scores.}  \item{Yloadings}{a matrix of Y-loadings.}  \item{projection}{the projection matrix used to convert X to scores.}  \item{Xmeans}{a vector of means of the X variables.}  \item{Ymeans}{a vector of means of the Y variables.}  \item{fitted.values}{an array of fitted values.  The dimensions of    \code{fitted.values} are \code{c(nobj, npred, ncomp)} with    \code{nobj} the number samples and \code{npred} the number of    Y variables.}  \item{residuals}{an array of regression residuals.  It has the same    dimensions as \code{fitted.values}.}  \item{Xvar}{a vector with the amount of X-variance explained by each    number of components.}  \item{Xtotvar}{Total variance in \code{X}.}  If \code{stripped} is \code{TRUE}, only the components  \code{coefficients}, \code{Xmeans} and \code{Ymeans} are returned.}\references{  de Jong, S. and ter Braak,  C. J. F. (1994) Comments on the PLS kernel  algorithm.  \emph{Journal of Chemometrics}, \bold{8}, 169--174.  Dayal, B. S. and MacGregor, J. F. (1997) Improved PLS algorithms.  \emph{Journal of Chemometrics}, \bold{11}, 73--85.}\author{Ron Wehrens and Bj鴕n-Helge Mevik}\seealso{  \code{\link{mvr}}  \code{\link{plsr}}  \code{\link{pcr}}  \code{\link{widekernelpls.fit}}  \code{\link{simpls.fit}}  \code{\link{oscorespls.fit}}}\keyword{regression}\keyword{multivariate}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -