📄 map.svn-base
字号:
> map<Key, T, Compare, Allocator>::equal_range(const key_type& x) const { pair< typename map<Key, T, Compare, Allocator>::const_iterator, typename map<Key, T, Compare, Allocator>::const_iterator > retval; retval.first = __base_map<Key, T, Compare, Allocator>::lower_bound(x); retval.second = upper_bound(x); return retval; } template <class Key, class T, class Compare, class Allocator> bool operator== (const map<Key,T,Compare,Allocator>& x, const map<Key,T,Compare,Allocator>& y) { if(x.c == y.c && x.data = y.data){ return true; } return false; }//Implementation of multimaptemplate<class Key, class T, class Compare, class Allocator> class _UCXXEXPORT multimap : public __base_map<Key, T, Compare, Allocator>{ //Default value of allocator does not meet C++ standard specs, but it works for this library //Deal with itpublic: typedef __base_map<Key, T, Compare, Allocator> base; typedef typename base::key_type key_type; typedef typename base::mapped_type mapped_type; typedef typename base::value_type value_type; typedef typename base::key_compare key_compare; typedef typename base::allocator_type allocator_type; typedef typename base::reference reference; typedef typename base::const_reference const_reference; typedef typename base::iterator iterator; typedef typename base::const_iterator const_iterator; typedef typename base::size_type size_type; typedef typename base::difference_type difference_type; typedef typename base::pointer pointer; typedef typename base::const_pointer const_pointer; typedef typename base::reverse_iterator reverse_iterator; typedef typename base::const_reverse_iterator const_reverse_iterator; explicit multimap(const Compare& comp = Compare(), const Allocator& al = Allocator()) : base(comp, al) { } template <class InputIterator> multimap(InputIterator first, InputIterator last, const Compare& comp = Compare(), const Allocator& = Allocator()); multimap(const multimap<Key,T,Compare,Allocator>& x) : base(x) { } ~multimap() { } multimap<Key,T,Compare,Allocator>& operator=(const multimap<Key,T,Compare,Allocator>& x); iterator insert(const value_type& x); iterator insert(iterator position, const value_type& x); template <class InputIterator> void insert(InputIterator first, InputIterator last); void erase(iterator position); size_type erase(const key_type& x); void erase(iterator first, iterator last); using base::begin; using base::end; using base::rbegin; using base::rend; using base::empty; using base::size; using base::max_size; iterator find(const key_type& x); const_iterator find(const key_type& x) const; size_type count(const key_type& x) const; iterator upper_bound(const key_type& x); const_iterator upper_bound(const key_type& x) const; pair<iterator,iterator> equal_range(const key_type& x); pair<const_iterator,const_iterator> equal_range(const key_type& x) const;protected: //friend class base::iterator; //friend class base::const_iterator; using base::data; using base::c;}; template <class Key, class T, class Compare, class Allocator> template <class InputIterator> multimap<Key, T, Compare, Allocator>:: multimap(InputIterator first, InputIterator last, const Compare& comp, const Allocator& al) : base(comp, al) { while(first !=last){ insert(*first); ++first; } } template <class Key, class T, class Compare, class Allocator> typename multimap<Key, T, Compare, Allocator>::iterator multimap<Key, T, Compare, Allocator>::insert(const value_type &x) { iterator retval; //Either set is empty or element to insert goes at the begining if(data.size() == 0 || c(x.first, data[0].first) ){ data.push_front(x); return begin(); } //Element to insert goes at the end if( c(data[data.size() - 1].first, x.first) ){ data.push_back(x); return end(); } retval = __base_map<Key, T, Compare, Allocator>::lower_bound(x.first); //No match - this should never happen if(retval == end()){ return retval; } if( !c(x.first, retval->first) ){ ++retval; } typename deque<pair<Key, T>, allocator<pair<Key, T> > >::iterator q(&data, retval.element); data.insert(q, x); return retval; } template <class Key, class T, class Compare, class Allocator> typename multimap<Key, T, Compare, Allocator>::iterator multimap<Key, T, Compare, Allocator>::insert(iterator position, const value_type& x) { //Inserting at begining if(position == begin() && !c(position->first, x.first) ){ data.push_front(x); return position; } //Inserting at end if(position == end() && !c(x.first, data[data.size() - 1].first) ){ data.push_back(x); return position; } //Inserting in middle iterator temp = position; --temp; if( !c(position->first, x.first) && !c(x.first, temp->first) ){ typename deque<pair<Key, T>, allocator<pair<Key, T> > >::iterator q(&data, position.element); data.insert(q, x); return position; } return insert(x); } template <class Key, class T, class Compare, class Allocator> template <class InputIterator> void multimap<Key, T, Compare, Allocator>::insert(InputIterator first, InputIterator last) { while(first !=last){ insert(*first); ++first; } } template <class Key, class T, class Compare, class Allocator> void multimap<Key, T, Compare, Allocator>::erase(iterator position) { //Create a deque iterator from position information and then //Use built in erase feature because it is handy. typename deque<pair<Key, T>, allocator<pair<Key, T> > >::iterator pos(&data, position.element); data.erase(pos); } template <class Key, class T, class Compare, class Allocator> typename multimap<Key, T, Compare, Allocator>::size_type multimap<Key, T, Compare, Allocator>::erase(const key_type& x) { typename multimap<Key, T, Compare, Allocator>::iterator f = __base_map<Key, T, Compare, Allocator>::lower_bound(x); typename multimap<Key, T, Compare, Allocator>::iterator l = upper_bound(x); size_type t = l.element - f.element; erase(f, l); return t; } template <class Key, class T, class Compare, class Allocator> void multimap<Key, T, Compare, Allocator>::erase(iterator first, iterator last) { typename deque<pair<Key, T>, allocator<pair<Key, T> > >::iterator f(&data, first.element); typename deque<pair<Key, T>, allocator<pair<Key, T> > >::iterator l(&data, last.element); data.erase(f, l); } template <class Key, class T, class Compare, class Allocator> typename multimap<Key, T, Compare, Allocator>::iterator multimap<Key, T, Compare, Allocator>::find(const key_type& x) { if(data.size() == 0){ return end(); } iterator retval = __base_map<Key, T, Compare, Allocator>::lower_bound(x); if(retval == end()){ return retval; } if( c(x, retval->first) || c(retval->first, x) ){ return end(); } while( retval.element > 0 && !c(retval->first, x) && !c(x, retval->first) ){ --retval; } if( c(retval->first, x)){ ++retval; } return retval; } template <class Key, class T, class Compare, class Allocator> typename multimap<Key, T, Compare, Allocator>::const_iterator multimap<Key, T, Compare, Allocator>::find(const key_type& x) const { if(data.size() == 0){ return end(); } const_iterator retval = __base_map<Key, T, Compare, Allocator>::lower_bound(x); if(retval == end()){ return retval; } if( c(x, retval->first) || c(retval->first, x) ){ return end(); } while( retval.element > 0 && !c(retval->first, x) && !c(x, retval->first) ){ --retval; } if( c(retval->first, x)){ ++retval; } return retval; } template <class Key, class T, class Compare, class Allocator> typename multimap<Key, T, Compare, Allocator>::size_type multimap<Key, T, Compare, Allocator>:: count(const typename multimap<Key, T, Compare, Allocator>::key_type& x) const { pair< typename multimap<Key, T, Compare, Allocator>::const_iterator, typename multimap<Key, T, Compare, Allocator>::const_iterator > temp = equal_range(x); return temp.second.element - temp.first.element; } template <class Key, class T, class Compare, class Allocator> typename multimap<Key, T, Compare, Allocator>::iterator multimap<Key, T, Compare, Allocator>::upper_bound(const key_type& x) { typename multimap<Key, T, Compare, Allocator>::iterator i = __base_map<Key, T, Compare, Allocator>::lower_bound(x); while(i != end() && !c(x, i->first)){ ++i; } return i; } template <class Key, class T, class Compare, class Allocator> typename multimap<Key, T, Compare, Allocator>::const_iterator multimap<Key, T, Compare, Allocator>::upper_bound(const key_type& x) const { typename multimap<Key, T, Compare, Allocator>::const_iterator i = __base_map<Key, T, Compare, Allocator>::lower_bound(x); while(i != end() && !c(x, i->first)){ ++i; } return i; } template <class Key, class T, class Compare, class Allocator> pair< typename multimap<Key, T, Compare, Allocator>::iterator, typename multimap<Key, T, Compare, Allocator>::iterator > multimap<Key, T, Compare, Allocator>::equal_range(const key_type& x) { pair< typename multimap<Key, T, Compare, Allocator>::iterator, typename multimap<Key, T, Compare, Allocator>::iterator > retval; retval.first = __base_map<Key, T, Compare, Allocator>::lower_bound(x); retval.second = upper_bound(x); return retval; } template <class Key, class T, class Compare, class Allocator> pair< typename multimap<Key, T, Compare, Allocator>::const_iterator, typename multimap<Key, T, Compare, Allocator>::const_iterator > multimap<Key, T, Compare, Allocator>::equal_range(const key_type& x) const { pair< typename multimap<Key, T, Compare, Allocator>::const_iterator, typename multimap<Key, T, Compare, Allocator>::const_iterator > retval; retval.first = __base_map<Key, T, Compare, Allocator>::lower_bound(x); retval.second = upper_bound(x); return retval; }/* Non-member functions. These are at the end because they are not associated with any particular class. These will be implemented as I figure out exactly what all of them are supposed to do, and I have time. */ template <class Key, class T, class Compare, class Allocator> _UCXXEXPORT bool operator< (const map<Key,T,Compare,Allocator>& x, const map<Key,T,Compare,Allocator>& y); template <class Key, class T, class Compare, class Allocator> _UCXXEXPORT bool operator!= (const map<Key,T,Compare,Allocator>& x, const map<Key,T,Compare,Allocator>& y); template <class Key, class T, class Compare, class Allocator> _UCXXEXPORT bool operator> (const map<Key,T,Compare,Allocator>& x, const map<Key,T,Compare,Allocator>& y); template <class Key, class T, class Compare, class Allocator> _UCXXEXPORT bool operator>= (const map<Key,T,Compare,Allocator>& x, const map<Key,T,Compare,Allocator>& y); template <class Key, class T, class Compare, class Allocator> _UCXXEXPORT bool operator<= (const map<Key,T,Compare,Allocator>& x, const map<Key,T,Compare,Allocator>& y); template <class Key, class T, class Compare, class Allocator> _UCXXEXPORT void swap (map<Key,T,Compare,Allocator>& x, map<Key,T,Compare,Allocator>& y); template <class Key, class T, class Compare, class Allocator> _UCXXEXPORT bool operator== (const multimap<Key,T,Compare,Allocator>& x, const multimap<Key,T,Compare,Allocator>& y); template <class Key, class T, class Compare, class Allocator> _UCXXEXPORT bool operator< (const multimap<Key,T,Compare,Allocator>& x, const multimap<Key,T,Compare,Allocator>& y); template <class Key, class T, class Compare, class Allocator> _UCXXEXPORT bool operator!= (const multimap<Key,T,Compare,Allocator>& x, const multimap<Key,T,Compare,Allocator>& y); template <class Key, class T, class Compare, class Allocator> _UCXXEXPORT bool operator> (const multimap<Key,T,Compare,Allocator>& x, const multimap<Key,T,Compare,Allocator>& y); template <class Key, class T, class Compare, class Allocator> _UCXXEXPORT bool operator>= (const multimap<Key,T,Compare,Allocator>& x, const multimap<Key,T,Compare,Allocator>& y); template <class Key, class T, class Compare, class Allocator> _UCXXEXPORT bool operator<= (const multimap<Key,T,Compare,Allocator>& x, const multimap<Key,T,Compare,Allocator>& y); template <class Key, class T, class Compare, class Allocator> _UCXXEXPORT void swap (multimap<Key,T,Compare,Allocator>& x, multimap<Key,T,Compare,Allocator>& y);}#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -