⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fftsg.cpp.svn-base

📁 ffshow源码
💻 SVN-BASE
📖 第 1 页 / 共 5 页
字号:
#include "stdafx.h"#include "fftsg.h"class fftsg{typedef float REAL;public:        /*        Fast Fourier/Cosine/Sine Transform                dimension   :one                data length :power of 2                decimation  :frequency                radix       :split-radix                data        :inplace                table       :use        functions                cdft: Complex Discrete Fourier Transform                rdft: Real Discrete Fourier Transform                ddct: Discrete Cosine Transform                ddst: Discrete Sine Transform                dfct: Cosine Transform of RDFT (Real Symmetric DFT)                dfst: Sine Transform of RDFT (Real Anti-symmetric DFT)        function prototypes                void cdft(int, int, REAL *, int *, REAL *);                void rdft(int, int, REAL *, int *, REAL *);                void ddct(int, int, REAL *, int *, REAL *);                void ddst(int, int, REAL *, int *, REAL *);                void dfct(int, REAL *, REAL *, int *, REAL *);                void dfst(int, REAL *, REAL *, int *, REAL *);        -------- Complex DFT (Discrete Fourier Transform) --------                [definition]                        <case1>                                X[k] = sum_j=0^n-1 x[j]*exp(2*pi*i*j*k/n), 0<=k<n                        <case2>                                X[k] = sum_j=0^n-1 x[j]*exp(-2*pi*i*j*k/n), 0<=k<n                        (notes: sum_j=0^n-1 is a summation from j=0 to n-1)                [usage]                        <case1>                                ip[0] = 0; // first time only                                cdft(2*n, 1, a, ip, w);                        <case2>                                ip[0] = 0; // first time only                                cdft(2*n, -1, a, ip, w);                [parameters]                        2*n            :data length (int)                                                        n >= 1, n = power of 2                        a[0...2*n-1]   :input/output data (REAL *)                                                        input data                                                                a[2*j] = Re(x[j]),                                                                 a[2*j+1] = Im(x[j]), 0<=j<n                                                        output data                                                                a[2*k] = Re(X[k]),                                                                 a[2*k+1] = Im(X[k]), 0<=k<n                        ip[0...*]      :work area for bit reversal (int *)                                                        length of ip >= 2+sqrt(n)                                                        strictly,                                                         length of ip >=                                                                 2+(1<<(int)(log(n+0.5)/log(2))/2).                                                        ip[0],ip[1] are pointers of the cos/sin table.                        w[0...n/2-1]   :cos/sin table (REAL *)                                                        w[],ip[] are initialized if ip[0] == 0.                [remark]                        Inverse of                                 cdft(2*n, -1, a, ip, w);                        is                                 cdft(2*n, 1, a, ip, w);                                for (j = 0; j <= 2 * n - 1; j++) {                                        a[j] *= 1.0 / n;                                }                        .        -------- Real DFT / Inverse of Real DFT --------                [definition]                        <case1> RDFT                                R[k] = sum_j=0^n-1 a[j]*cos(2*pi*j*k/n), 0<=k<=n/2                                I[k] = sum_j=0^n-1 a[j]*sin(2*pi*j*k/n), 0<k<n/2                        <case2> IRDFT (excluding scale)                                a[k] = (R[0] + R[n/2]*cos(pi*k))/2 +                                            sum_j=1^n/2-1 R[j]*cos(2*pi*j*k/n) +                                            sum_j=1^n/2-1 I[j]*sin(2*pi*j*k/n), 0<=k<n                [usage]                        <case1>                                ip[0] = 0; // first time only                                rdft(n, 1, a, ip, w);                        <case2>                                ip[0] = 0; // first time only                                rdft(n, -1, a, ip, w);                [parameters]                        n              :data length (int)                                                        n >= 2, n = power of 2                        a[0...n-1]     :input/output data (REAL *)                                                        <case1>                                                                output data                                                                        a[2*k] = R[k], 0<=k<n/2                                                                        a[2*k+1] = I[k], 0<k<n/2                                                                        a[1] = R[n/2]                                                        <case2>                                                                input data                                                                        a[2*j] = R[j], 0<=j<n/2                                                                        a[2*j+1] = I[j], 0<j<n/2                                                                        a[1] = R[n/2]                        ip[0...*]      :work area for bit reversal (int *)                                                        length of ip >= 2+sqrt(n/2)                                                        strictly,                                                         length of ip >=                                                                 2+(1<<(int)(log(n/2+0.5)/log(2))/2).                                                        ip[0],ip[1] are pointers of the cos/sin table.                        w[0...n/2-1]   :cos/sin table (REAL *)                                                        w[],ip[] are initialized if ip[0] == 0.                [remark]                        Inverse of                                 rdft(n, 1, a, ip, w);                        is                                 rdft(n, -1, a, ip, w);                                for (j = 0; j <= n - 1; j++) {                                        a[j] *= 2.0 / n;                                }                        .        -------- DCT (Discrete Cosine Transform) / Inverse of DCT --------                [definition]                        <case1> IDCT (excluding scale)                                C[k] = sum_j=0^n-1 a[j]*cos(pi*j*(k+1/2)/n), 0<=k<n                        <case2> DCT                                C[k] = sum_j=0^n-1 a[j]*cos(pi*(j+1/2)*k/n), 0<=k<n                [usage]                        <case1>                                ip[0] = 0; // first time only                                ddct(n, 1, a, ip, w);                        <case2>                                ip[0] = 0; // first time only                                ddct(n, -1, a, ip, w);                [parameters]                        n              :data length (int)                                                        n >= 2, n = power of 2                        a[0...n-1]     :input/output data (REAL *)                                                        output data                                                                a[k] = C[k], 0<=k<n                        ip[0...*]      :work area for bit reversal (int *)                                                        length of ip >= 2+sqrt(n/2)                                                        strictly,                                                         length of ip >=                                                                 2+(1<<(int)(log(n/2+0.5)/log(2))/2).                                                        ip[0],ip[1] are pointers of the cos/sin table.                        w[0...n*5/4-1] :cos/sin table (REAL *)                                                        w[],ip[] are initialized if ip[0] == 0.                [remark]                        Inverse of                                 ddct(n, -1, a, ip, w);                        is                                 a[0] *= 0.5;                                ddct(n, 1, a, ip, w);                                for (j = 0; j <= n - 1; j++) {                                        a[j] *= 2.0 / n;                                }                        .        -------- DST (Discrete Sine Transform) / Inverse of DST --------                [definition]                        <case1> IDST (excluding scale)                                S[k] = sum_j=1^n A[j]*sin(pi*j*(k+1/2)/n), 0<=k<n                        <case2> DST                                S[k] = sum_j=0^n-1 a[j]*sin(pi*(j+1/2)*k/n), 0<k<=n                [usage]                        <case1>                                ip[0] = 0; // first time only                                ddst(n, 1, a, ip, w);                        <case2>                                ip[0] = 0; // first time only                                ddst(n, -1, a, ip, w);                [parameters]                        n              :data length (int)                                                        n >= 2, n = power of 2                        a[0...n-1]     :input/output data (REAL *)                                                        <case1>                                                                input data                                                                        a[j] = A[j], 0<j<n                                                                        a[0] = A[n]                                                                output data                                                                        a[k] = S[k], 0<=k<n                                                        <case2>                                                                output data                                                                        a[k] = S[k], 0<k<n                                                                        a[0] = S[n]                        ip[0...*]      :work area for bit reversal (int *)                                                        length of ip >= 2+sqrt(n/2)                                                        strictly,                                                         length of ip >=                                                                 2+(1<<(int)(log(n/2+0.5)/log(2))/2).                                                        ip[0],ip[1] are pointers of the cos/sin table.                        w[0...n*5/4-1] :cos/sin table (REAL *)                                                        w[],ip[] are initialized if ip[0] == 0.                [remark]                        Inverse of                                 ddst(n, -1, a, ip, w);                        is                                 a[0] *= 0.5;                                ddst(n, 1, a, ip, w);                                for (j = 0; j <= n - 1; j++) {                                        a[j] *= 2.0 / n;                                }                        .        -------- Cosine Transform of RDFT (Real Symmetric DFT) --------                [definition]                        C[k] = sum_j=0^n a[j]*cos(pi*j*k/n), 0<=k<=n                [usage]                        ip[0] = 0; // first time only                        dfct(n, a, t, ip, w);                [parameters]                        n              :data length - 1 (int)                                                        n >= 2, n = power of 2                        a[0...n]       :input/output data (REAL *)                                                        output data                                                                a[k] = C[k], 0<=k<=n                        t[0...n/2]     :work area (REAL *)                        ip[0...*]      :work area for bit reversal (int *)                                                        length of ip >= 2+sqrt(n/4)                                                        strictly,                                                         length of ip >=                                                                 2+(1<<(int)(log(n/4+0.5)/log(2))/2).                                                        ip[0],ip[1] are pointers of the cos/sin table.                        w[0...n*5/8-1] :cos/sin table (REAL *)                                                        w[],ip[] are initialized if ip[0] == 0.                [remark]                        Inverse of                                 a[0] *= 0.5;                                a[n] *= 0.5;                                dfct(n, a, t, ip, w);                        is                                 a[0] *= 0.5;                                a[n] *= 0.5;                                dfct(n, a, t, ip, w);                                for (j = 0; j <= n; j++) {                                        a[j] *= 2.0 / n;                                }                        .        -------- Sine Transform of RDFT (Real Anti-symmetric DFT) --------                [definition]                        S[k] = sum_j=1^n-1 a[j]*sin(pi*j*k/n), 0<k<n                [usage]                        ip[0] = 0; // first time only                        dfst(n, a, t, ip, w);                [parameters]                        n              :data length + 1 (int)                                                        n >= 2, n = power of 2                        a[0...n-1]     :input/output data (REAL *)                                                        output data                                                                a[k] = S[k], 0<k<n                                                        (a[0] is used for work area)                        t[0...n/2-1]   :work area (REAL *)                        ip[0...*]      :work area for bit reversal (int *)                                                        length of ip >= 2+sqrt(n/4)                                                        strictly,                                                         length of ip >=                                                                 2+(1<<(int)(log(n/4+0.5)/log(2))/2).                                                        ip[0],ip[1] are pointers of the cos/sin table.                        w[0...n*5/8-1] :cos/sin table (REAL *)                                                        w[],ip[] are initialized if ip[0] == 0.                [remark]                        Inverse of                                 dfst(n, a, t, ip, w);                        is                                 dfst(n, a, t, ip, w);                                for (j = 1; j <= n - 1; j++) {                                        a[j] *= 2.0 / n;                                }                        .        Appendix :                The cos/sin table is recalculated when the larger table required.                w[] and ip[] are compatible with all routines.        */        static void cdft(int n, int isgn, REAL *a, int *ip, REAL *w)        {                int nw;                    nw = ip[0];                if (n > (nw << 2)) {                        nw = n >> 2;                        makewt(nw, ip, w);                }                if (isgn >= 0) {                        cftfsub(n, a, ip + 2, nw, w);                } else {                        cftbsub(n, a, ip + 2, nw, w);                }        }        static void rdft(int n, int isgn, REAL *a, int *ip, REAL *w)        {                int nw, nc;                REAL xi;                    nw = ip[0];

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -