📄 covr.m
字号:
function ret = covR ( xa , xb , ra , rb , jitter )# make covariance matrix, not necessarily square, for gaussian process if (nargin != 5) usage ("covR (xa,xb,r,jitter) - xa,xb is vector, ra,rb is vector like x"); endifglobal A ;global Rdjcm ; s = size(xa); Sa=s(2); s = size(xb); Sb=s(2); xi = ones(size(xb))' * xa ; xj = xi' ; xi = ones(size(xa))' * xb ; dij = xi .- xj ; D = dij .^ 2 ; for i=1:Sa for j=1:Sb r2(i,j) = (ra(1,i)^2 + rb(1,j)^2) ; ir2(i,j) = 1.0 / sqrt( 1.0/ra(1,i)^2 + 1.0/rb(1,j)^2 ); if ( Rdjcm == 1 ) C(i,j) = (1.0/r2(i,j)) * A * exp ( - D(i,j) / r2(i,j) ) ; elseif ( Rdjcm == 2 ) # uniform variance version C(i,j) = (ra(1,i)*rb(1,j)/r2(i,j)) * A * exp ( - D(i,j) / r2(i,j) ) ; else # mng C(i,j) = (ir2(i,j)) * A * exp ( - 0.5 * D(i,j) / r2(i,j) ) ; endif endfor endfor if ( jitter && (size(xb)==size(xa)) ) C = C + jitter * eye ( Sa ) ; endif ret = C ; endfunction
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -