📄 split1.m
字号:
% Nonlinear simulation model.% only self phase modulation with dispersion is considered here% ---------------------------------------------------------------------------- nB = 64; % number of bits in the pattern npb = 64; % number of points per bit Tsample = npb*nB; % total number of samples in time domain B = 4*2.48832e9; % bit rate (# of bits/second) T = 1/B; % bit period Tstep = T/npb; % step size in time domain = period/number of points per bit Fsample = Tsample; % Sampling rate in freq. domain FLoop = 1:Fsample; % generate an array of frequency sample Fstep = B/nB; % freq. sampling interval nf=Tsample; %how many sample points used in FFT fre=(-nf/2:nf/2-1)/Tstep/nf; %frequency scale time=(1:nf)*Tstep; %time scale omg=2*pi*fre; %load data with chirp at the output of the external modulator.a=rand(1,64)>0.5;b=transpose(a)*ones(1,64);cw=transpose(b);d=reshape(cw,1,4096);pppln=d';%load pppln.prn %signal optical intensityfffln=ones(size(pppln))*0; %no chirp considere dpp%fiber dispersion parameters%------------------------------------------------------------------lam=1.553e-6; %signal wavelength (um)s0=85; %fiber dispersion slope (s/m^3) 0.075ps/km/nm^2)c=3e8; %lighe velocitylam0=1320*1e-9; %zero dispersion wavelength (m)dlam=lam^2/c.*fre; %wavelength shift due to signal baseband.wl=lam+dlam; %actual wavelength rangeD(1:nf)=s0/4*(wl(1:nf)-(lam0^4 ./(wl(1:nf).^3))); %wavelength dependent dispersion factorDs=s0/4*(lam-(lam0^4 /(lam.^3)));Ds0=Ds;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%pwr=pppln;phi=(fffln-mean(fffln))*0;pave=mean(pppln); %signal average powerppr=sqrt(pwr).*cos(phi); %re-construct signal (real part)ppi=sqrt(pwr).*sin(phi); %re-construct signal (imaginary part)% Nonlinear effects of the fiber%----------------------------------------------------------------------------n2=2.35e-20; %Intensity dependent refractive index (m^2/W)%Aeff=5.5e-11; %effective fiber cross section (DSF)Aeff=8e-11; %effective fiber cross section (SMF)loss=0.25; %fiber loss/10 (dB/km)alpha1=1e-3*2.303*(loss/10); %fiber loss in Neper/m.csp=ppr+i*ppi; % normalized complex optical field at inputppr=(csp+conj(csp))/2;ppi=imag((csp-conj(csp))/2);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% cascade fiber spansal=80; %fiber length in kilometerl=al*1e3; %fiber length in meterpwr=(abs(ppr+i*ppi)).^2;ppo=10; %signal average power in dBmpower=10 .^(ppo/10)*1e-3/mean(pwr); %signal peak power in Watt%calculate section lengths dl(mm)%-----------------------------------------------------------------------------mm=100; %number of sections in the fiberdl=l/mm;%----------------------------------------------------------------------------- Input=sqrt(power)*(ppr+i*ppi); % complex optical field at input csp=Input; for k=1:mm Hf=exp(-i*lam^2/(4*pi*c)*(2*pi*fre).^2.*D*dl); Hf=[Hf(nf/2+1:nf) Hf(1:nf/2)]; sp=fft(csp)/(B*npb); sp=sp.*Hf'; csp=ifft(sp)*B*npb; csb=abs(csp.*conj(csp)); gggm=csb*(1-exp(-alpha1*dl))/alpha1*n2*2*pi/Aeff/lam; csp=csp.*exp(-i*gggm)*sqrt(exp(-alpha1*dl)); end sp=fftshift(fft(csp)); %signal in frequency domain % A rise-cosine filter at the receiver fc=7.5e9; %filter 3-dB bandwidth in Hz. HHh=(1+exp(j*fre/fc*pi/2))/2; HHh(1:4096/2+1-98)=zeros(size(HHh(1:4096/2+1-98))); HHh(4096/2+1+98:4096)=zeros(size(HHh(4096/2+1+98:4096))); ssp=sp.*(HHh.^2)'; csp=ifft(ssp); pwr=csp.*conj(csp); pwr=pwr/mean(pwr)/2; ppr=(csp+conj(csp))/2; ppi=imag((csp-conj(csp))/2);csp=ppr+i*ppi; % complex optical field at inputppr=(csp+conj(csp))/2;ppi=imag((csp-conj(csp))/2);pwr=csp.*conj(csp);pwr=pwr/mean(pwr)/2;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%pwo=pwr;pwopp=sqrt(abs(pwo.*conj(pwo)));pwopp=pwopp./mean(pwopp)/2;Deye = eyediagram(pwopp,npb,nB);axis([0 125 0 3]) title(['Signal Eye Diagram, Pin=',num2str(ppo)]);return
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -