📄 forwards_backwards.m
字号:
function [alpha, beta, gamma, xi, loglik, gamma2] = forwards_backwards(... prior, transmat, obslik, obslik2, mixmat, act, filter_only)% FORWARDS_BACKWARDS Compute the posterior probs. in an HMM using the forwards backwards algo.%% Use [ALPHA, BETA, GAMMA, XI, LOGLIK] = FORWARDS_BACKWARDS(PRIOR, TRANSMAT, OBSLIK)% for HMMs where the Y(t) depends only on Q(t).% Use OBSLIK = MK_DHMM_OBS_LIK(DATA, B) or OBSLIK = MK_GHMM_OBS_LIK(DATA, MU, SIGMA) first.% If the sequence is of length 1, XI will have size S*S*0, and ALPHA=GAMMA and BETA = 1.%% Use [ALPHA, BETA, GAMMA, XI, LOGLIK, GAMMA2] = FORWARDS_BACKWARDS(PRIOR, TRANSMAT, OBSLIK, OBSLIK2, MIXMAT)% for HMMs where Y(t) depends on Q(t) and M(t), the mixture component.% Use [OBSLIK, OBSLIK2] = MK_MHMM_OBS_LIK(DATA, MU, SIGMA, MIXMAT) first.% % Use [ALPHA, BETA, GAMMA, XI, LOGLIK, GAMMA2] = FORWARDS_BACKWARDS(PRIOR, TRANSMAT, OBSLIK, [], [], ACT)% for POMDPs, where ACT(t) is the action that inputs to Q(t) (so act(1) is ignored)%% FORWARDS_BACKWARDS(PRIOR, TRANSMAT, OBSLIK, [], [], ACT, FILTER_ONLY) with FILTER_ONLY = 1% will just run the forwards algorithm. In this case, alpha = gamma, and beta = gamma2 = [].% % Inputs:% PRIOR(I) = Pr(Q(1) = I)% TRANSMAT(I,J) = Pr(Q(T+1)=J | Q(T)=I)% OBSLIK(I,T) = Pr(Y(T) | Q(T)=I)%% For mixture models only:% OBSLIK2(I,K,T) = Pr(Y(T) | Q(T)=I, M(T)=K)% MIXMAT(I,K) = Pr(M(T)=K | Q(T)=I)%% For POMDPs, transmat{a}(i,j) = Pr(Q(t+1)=j | Q(t)=i, A(t)=a)%% Outputs:% alpha(i,t) = Pr(X(t)=i, O(1:t))% beta(i,t) = Pr(O(t+1:T) | X(t)=i)% gamma(i,t) = Pr(X(t)=i | O(1:T))% xi(i,j,t) = Pr(X(t)=i, X(t+1)=j | O(1:T)) t <= T-1% gamma2(j,k,t) = Pr(Q(t)=j, M(t)=k | O(1:T))%if ~exist('obslik2') | isempty(obslik2) mix = 0; M = 1;else mix = 1; M = size(mixmat, 2);endT = size(obslik, 2);if ~exist('act') act = ones(1, T); transmat = { transmat };endif ~exist('filter_only') filter_only = 0;endQ = length(prior);scale = ones(1,T);% scale(t) = Pr(O(t) | O(1:t-1))% Hence prod_t scale(t) = Pr(O(1)) Pr(O(2)|O(1)) Pr(O(3) | O(1:2)) ... = Pr(O(1), ... ,O(T)) = P% or log P = sum_t log scale(t)%% Note, scale(t) = 1/c(t) as defined in Rabiner% Hence we divide beta(t) by scale(t).% Alternatively, we can just normalise beta(t) at each step.loglik = 0;prior = prior(:); alpha = zeros(Q,T);beta = zeros(Q,T);gamma = zeros(Q,T);xi = zeros(Q,Q,T-1);gamma2 = zeros(Q,M,T);t = 1;alpha(:,1) = prior .* obslik(:,t);[alpha(:,t), scale(t)] = normalise(alpha(:,t));for t=2:T alpha(:,t) = (transmat{act(t)}' * alpha(:,t-1)) .* obslik(:,t); [alpha(:,t), scale(t)] = normalise(alpha(:,t)); xi(:,:,t-1) = normalise((alpha(:,t-1) * obslik(:,t)') .* transmat{act(t)});endif filter_only beta = []; gamma = alpha; gamma2 = [];else beta(:,T) = ones(Q,1); gamma(:,T) = normalise(alpha(:,T) .* beta(:,T)); t=T; if mix denom = obslik(:,t) + (obslik(:,t)==0); % replace 0s with 1s before dividing gamma2(:,:,t) = obslik2(:,:,t) .* mixmat .* repmat(gamma(:,t), [1 M]) ./ repmat(denom, [1 M]); end for t=T-1:-1:1 b = beta(:,t+1) .* obslik(:,t+1); %beta(:,t) = (transmat{act(t)} * b) / scale(t); beta(:,t) = normalise((transmat{act(t+1)} * b)); gamma(:,t) = normalise(alpha(:,t) .* beta(:,t)); xi(:,:,t) = normalise((transmat{act(t+1)} .* (alpha(:,t) * b'))); if mix denom = obslik(:,t) + (obslik(:,t)==0); % replace 0s with 1s before dividing gamma2(:,:,t) = obslik2(:,:,t) .* mixmat .* repmat(gamma(:,t), [1 M]) ./ repmat(denom, [1 M]); end endendloglik = sum(log(scale));
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -