⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 i2saudio.cpp

📁 CIRRUS 公司EP93XX系列CPU的WINCE下的BSP
💻 CPP
📖 第 1 页 / 共 5 页
字号:
    FUNC_I2S((L"-I2SCodec::SetSampleRate\r\n"));
    return (MMSYSERR_NOERROR);
}



//****************************************************************************
// CalculateClosestFreq
//****************************************************************************
// CalculateClosestFreq
// 
//   ulPLLFreq           -  PLL output Frequency (Mhz)
//   ulRequestedMClkFreq -  Requested Video Clock Frequency.
//   pulActualMClkFreq   -  Returned Actual Video Rate.
//   pulI2SDiv           -  Video Divider register.
//
//   Return            0 - Failure
//                     1 - Success
//
static int CalculateClosestFreq
(
    ULONG   ulPLLFreq, 
    ULONG   ulRequestedMClkFreq,
    PULONG  pulActualMClkFreq,
    PULONG  pulI2SDiv
)
{
    
    ULONG   ulLower;
    ULONG   ulUpper;
    ULONG   ulDiv;
    int     x;

    //
    // Calculate the closest divisor.
    //
    ulDiv =  (ulPLLFreq * 2)/ ulRequestedMClkFreq;

    for(x = 1; x < sizeof(I2SDivTable)/sizeof(DIV_TABLE); x++)
    {

        //
        // Calculate the next greater and lower value.
        //
        ulLower = I2SDivTable[x - 1].ulTotalDiv;     
        ulUpper = I2SDivTable[x].ulTotalDiv;     

        //
        // Check to see if it is in between the two values.
        //
        if(ulLower <= ulDiv && ulDiv < ulUpper)
        {
            break;
        }
    }

    //
    // Return if we did not find a divisor.
    //
    if(x == sizeof(I2SDivTable)/sizeof(DIV_TABLE))
    {
        *pulActualMClkFreq  = 0;
        *pulI2SDiv          = 0;
        return 0;
    }

    //
    // See which is closer, the upper or the lower case.
    //
    if(ulUpper * ulRequestedMClkFreq - ulPLLFreq * 2 >  
      ulPLLFreq * 2 - ulLower * ulRequestedMClkFreq)
    {
        x-=1;
    }
    *pulActualMClkFreq  = (ulPLLFreq * 2)/ I2SDivTable[x].ulTotalDiv;
    *pulI2SDiv          = I2SDivTable[x].ulI2SDiv;
    return(1);
}


//****************************************************************************
// I2SCodec::StartPlayBack
//****************************************************************************
// Starts the Playback
//
// 
//
MMRESULT  I2SCodec::StartPlayback(ULONG ulChannel)
{
    //int i;
    //if(!m_bRecordOpened)
    //{
    //    *SAI_GCR        = GCR_PCLK;
    //}

    switch(ulChannel)
    {
        case 0:
            // for(i = 0; i<8 ;i++)
            // {
            //    *SAI_TX0_LEFT   = 0;
            //    *SAI_TX0_RIGHT  = 0; 
            // }
            // DelayuS(160);
            *SAI_TX0_EN     = 1;
            break;
        case 1:
            // for(i = 0; i<8 ;i++)
            // {
            //    *SAI_TX1_LEFT   = 0;
            //    *SAI_TX1_RIGHT  = 0; 
            //    *SAI_TX1_EN     = 1;
            // }
            // DelayuS(160);
            *SAI_TX1_EN     = 1;
            break;
        case 2:
            // for(i = 0; i<8 ;i++)
            // {
            //    *SAI_TX2_LEFT   = 0;
            //    *SAI_TX2_RIGHT  = 0; 
            //     *SAI_TX2_EN     = 1;
            // }
            // DelayuS(160);
            *SAI_TX2_EN     = 1;
            break;
    }

    return (MMSYSERR_NOERROR);
}

//****************************************************************************
// I2SCodec::StartRecord
//****************************************************************************
// 
// 
//
MMRESULT  I2SCodec::StartRecord(ULONG ulChannel)
{
    //if(!m_bPlaybackOpened)
    //{
    //    *SAI_GCR        = GCR_PCLK;
    //}
    switch(ulChannel)
    {
        case 0:
            *SAI_RX0_EN     = 1;
            break;
        case 1:
            *SAI_RX1_EN     = 1;
            break;
        case 2:
            *SAI_RX2_EN     = 1;
            break;
    }

    return (MMSYSERR_NOERROR);
}

//****************************************************************************
// I2SCodec::StopPlayBack
//****************************************************************************
// 
// 
//
MMRESULT  I2SCodec::StopPlayback(ULONG ulChannel)
{
    switch(ulChannel)
    {
        case 0:
            *SAI_TX0_EN     = 0;
            break;
        case 1:
            *SAI_TX1_EN     = 0;
            break;
        case 2:
            *SAI_TX2_EN     = 0;
            break;
    }

    // DelayuS(160);
    // if(!m_bRecordOpened)
    // {
    //    *SAI_GCR        = 0;
    // }
    return (MMSYSERR_NOERROR);
}

//****************************************************************************
// I2SCodec::StopRecord
//****************************************************************************
// 
// 
//
MMRESULT  I2SCodec::StopRecord(ULONG ulChannel)
{
    switch(ulChannel)
    {
        case 0:
            *SAI_RX0_EN     = 0;
            break;
        case 1:
            *SAI_RX1_EN     = 0;
            break;
        case 2:
            *SAI_RX2_EN     = 0;
            break;
    }

    // if(!m_bPlaybackOpened)
    // {
    //     *SAI_GCR        = 0;
    // }
    return (MMSYSERR_NOERROR);
}


//****************************************************************************
// I2SCodec::SetVolume
//****************************************************************************
// 
// 
//
MMRESULT   I2SCodec::SetVolume
(
    ULONG ulRightVolume, 
    ULONG ulLeftVolume, 
    ULONG ulChannel
)
{
    UCHAR   ucRightDacVolume, ucLeftDacVolume;
    ULONG   ulRightDacVolume, ulLeftDacVolume;
    UCHAR   ulRightDacReg, ulLeftDacReg;


    //
    // If We are not using i2s volume control just return.
    //
    if(!m_bUseI2SVolumeControl)
        return(MMSYSERR_NOERROR);


    if(m_ulCodec == 4228)
    {
        //
        // Calculate the left and right volume for the 4228.
        //
        ulRightDacVolume = 181 - ( ( 181 * ( ulRightVolume>>16 )) / 0xFFFF );
        ucRightDacVolume = (UCHAR) ulRightDacVolume;

        ulLeftDacVolume  = 181 - ( ( 181 * ( ulLeftVolume>>16  )) / 0xFFFF );
        ucLeftDacVolume  = (UCHAR) ulLeftDacVolume;

        
        ulRightDacReg    = CS4228_DAC1_VOL;
        ulLeftDacReg     = CS4228_DAC2_VOL;

    }
    else
    {
        //
        // Calculate the left and right volume for the 4271.
        //
        ulRightDacVolume = 90 - ( ( 90 * ( ulRightVolume>>16 )) / 0xFFFF );
        ucRightDacVolume = (UCHAR) ulRightDacVolume;

        ulLeftDacVolume  = 90 - ( ( 90 * ( ulLeftVolume>>16  )) / 0xFFFF );
        ucLeftDacVolume  = (UCHAR) ulLeftDacVolume;

        ulRightDacReg    = CS4271_DACA_VOL;
        ulLeftDacReg     = CS4271_DACB_VOL;
    }

    if(m_bTwoWire )
    {

        //
        // Write the codec registers.
        //
        EnterCriticalSection( &m_CriticalSection);

        WriteCodecReg(ulRightDacReg, ucRightDacVolume);
        WriteCodecReg(ulLeftDacReg, ucLeftDacVolume);

        LeaveCriticalSection( &m_CriticalSection);
    }
    else
    {
        //
        // Write the codec registers.
        //
        EnterCriticalSection( &m_CriticalSection);
        SetSPIToI2S(m_ulCodec);

        WriteCodecRegSPI(ulRightDacReg, ucRightDacVolume);
        WriteCodecRegSPI(ulLeftDacReg, ucLeftDacVolume);

        SetSPIToPS2(m_ulCodec);

        LeaveCriticalSection( &m_CriticalSection);
    }

    return (MMSYSERR_NOERROR);
}
//****************************************************************************
// I2SCodec::GetDmaPort
//****************************************************************************
// Returns the port type to the dma engine.
// 
//
ULONG  I2SCodec::GetDmaPort(void)
{
    return PRALLOC_I2S1;
}


//****************************************************************************
// I2SCodec::WriteCodecReg
//****************************************************************************
// ucRegAddr    - CS4228 Register Address.
// usRegValue   - CS4228 Register Value.
//

MMRESULT I2SCodec::WriteCodecReg(UCHAR ucRegAddr, UCHAR ucRegValue)
{

    ULONG uiVal, uiDDR;
    unsigned char ucData, ucIdx, ucBit;
    ULONG ulTimeout;

    FUNC_I2S
    (
        (
            L"WriteCodecReg: Reg = 0x%02x, Value = 0x%02x\n", 
            ucRegAddr, 
            ucRegValue
        )
    );

    //
    // Read the current value of the GPIO data and data direction registers.
    //
    uiVal = *GPIO_PGDR;
    uiDDR = *GPIO_PGDDR;

    //
    // If the GPIO pins have not been configured since reset, the data 
    // and clock lines will be set as inputs and with data value of 0.
    // External pullup resisters are pulling them high.
    // Set them both high before configuring them as outputs.
    //
    uiVal |= (GPIOG_EEDAT | GPIOG_EECLK);
    *GPIO_PGDR = uiVal;

    //
    // Delay to meet the EE Interface timing specification.
    //
    DelayuS( EE_DELAY_USEC );

    //
    // Configure the EE data and clock lines as outputs.
    //
    uiDDR |= (GPIOG_EEDAT | GPIOG_EECLK);
    *GPIO_PGDDR = uiDDR;

    //
    // Delay to meet the EE Interface timing specification.
    //
    DelayuS( EE_DELAY_USEC );

    //
    // Drive the EE data line low.  Since the EE clock line is currently
    // high, this is the start condition.
    //
    uiVal &= ~GPIOG_EEDAT;
    *GPIO_PGDR = uiVal;

    //
    // Delay to meet the EE Interface timing specification.
    //
    DelayuS( EE_DELAY_USEC );

    //
    // Drive the EE clock line low.
    //
    uiVal &= ~GPIOG_EECLK;
    *GPIO_PGDR = uiVal;

    //
    // Delay to meet the EE Interface timing specification.
    //
    DelayuS( EE_DELAY_USEC );

    //
    // Loop through the three bytes which we will send.
    //
    for(ucIdx = 0; ucIdx < 3; ucIdx++)
    {
        //
        // Get the appropriate byte based on the current loop iteration.
        //
        if(ucIdx == 0)
        {
            //
            // Since this is a write operation, we set d0 of the address
            // which is the r/w bit.
            //
            ucData = (UCHAR)CS4228_DEV_ADDRESS;
        }
        else if(ucIdx == 1)
        {
            ucData = ucRegAddr;
        }
        else
        {
            ucData = ucRegValue;
        }

        //
        // Loop through the 8 bits in this byte.
        //
        for(ucBit = 0; ucBit < 8; ucBit++)
        {
            //
            // Set the EE data line to correspond to the most significant bit
            // of the data byte.
            // 
            if(ucData & 0x80)
            {
                uiVal |= GPIOG_EEDAT;
            }
            else
            {
                uiVal &= ~GPIOG_EEDAT;
            }
            *GPIO_PGDR = uiVal;

            //
            // Delay to meet the EE Interface timing specification.
            //
            DelayuS( EE_DELAY_USEC );

            //
            // Drive the EE clock line high.
            //
            *GPIO_PGDR = uiVal | GPIOG_EECLK;

            //
            // Delay to meet the EE Interface timing specification.
            //
            DelayuS( EE_DELAY_USEC );

            //

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -