📄 block.c
字号:
int i,j,i1,j1,ilev,m5[4],m6[4],coeff_ctr;
int level,scan_pos,run;
int nonzeroAC;
Macroblock *currMB = &img->mb_data[img->current_mb_nr];
int intra = IS_INTRA (currMB);
int qp_per,qp_rem,q_bits;
int qp_c;
int* ACLevel = img->cofAC[b8][b4][0];
int* ACRun = img->cofAC[b8][b4][1];
int **levelscale, **leveloffset;
int **invlevelscale;
Boolean lossless_qpprime = ((img->qp + img->bitdepth_luma_qp_scale)==0 && img->lossless_qpprime_flag==1);
qp_c = currMB->qp + img->chroma_qp_offset[uv];
qp_c = (qp_c < 0)? qp_c : QP_SCALE_CR[qp_c - MIN_QP];
qp_per = qp_per_matrix[(qp_c + img->bitdepth_chroma_qp_scale)];
qp_rem = qp_rem_matrix[(qp_c + img->bitdepth_chroma_qp_scale)];
q_bits = Q_BITS+qp_per;
levelscale = LevelScale4x4Chroma[uv][intra][qp_rem];
leveloffset = LevelOffset4x4Chroma[uv][intra][qp_per];
invlevelscale = InvLevelScale4x4Chroma[uv][intra][qp_rem];
// Horizontal transform
if(!lossless_qpprime)
for (j=0; j < BLOCK_SIZE; j++)
{
for (i=0; i < 2; i++)
{
i1=3-i;
m5[i]=img->m7[j][i]+img->m7[j][i1];
m5[i1]=img->m7[j][i]-img->m7[j][i1];
}
img->m7[j][0]=(m5[0]+m5[1]);
img->m7[j][2]=(m5[0]-m5[1]);
img->m7[j][1]=m5[3]*2+m5[2];
img->m7[j][3]=m5[3]-m5[2]*2;
}
// Vertical transform
if(!lossless_qpprime)
for (i=0; i < BLOCK_SIZE; i++)
{
for (j=0; j < 2; j++)
{
j1=3-j;
m5[j]=img->m7[j][i]+img->m7[j1][i];
m5[j1]=img->m7[j][i]-img->m7[j1][i];
}
img->m7[0][i]=(m5[0]+m5[1]);
img->m7[2][i]=(m5[0]-m5[1]);
img->m7[1][i]=m5[3]*2+m5[2];
img->m7[3][i]=m5[3]-m5[2]*2;
}
// Quant
nonzeroAC=FALSE;
run=-1;
scan_pos=0;
if(lossless_qpprime)
level = absm(img->m7[0][0]);
else
level =(absm(img->m7[0][0]) * levelscale[0][0] + leveloffset[0][0]) >> q_bits;
b8 -= 4*(uv+1);
dc_level_temp[uv][2*(b8 & 0x01)+(b4 & 0x01)][2*(b8 >> 1)+(b4 >> 1)] = sign(level, img->m7[0][0]);
/* Inverse Quantization */
if(lossless_qpprime)
{
img->m7[0][0] = sign( level, img->m7[0][0]);
}
else
{
if(qp_per<4)
{
img->m7[0][0] = sign( ((level*invlevelscale[0][0]+(1<<(3-qp_per)))>>(4-qp_per)), img->m7[0][0]);
}
else
{
img->m7[0][0] = sign( ((level*invlevelscale[0][0])<<(qp_per-4)), img->m7[0][0]);
}
}
for (coeff_ctr=1;coeff_ctr < 16;coeff_ctr++)
{
i=SNGL_SCAN[coeff_ctr][0];
j=SNGL_SCAN[coeff_ctr][1];
run++;
ilev=0;
if(lossless_qpprime)
level = absm (img->m7[j][i]);
else
level = (absm(img->m7[j][i])*levelscale[i][j]+leveloffset[i][j])>>q_bits;
if (level != 0)
{
if(i||j) nonzeroAC=TRUE;
ACLevel[scan_pos] = sign(level,img->m7[j][i]);
ACRun [scan_pos] = run;
++scan_pos;
run=-1; // reset zero level counter
level=sign(level, img->m7[j][i]);
if(lossless_qpprime)
{
ilev=level;
}
else if(qp_per<4)
{
ilev=(level*invlevelscale[i][j]+(1<<(3-qp_per)))>>(4-qp_per);
}
else
{
ilev=(level*invlevelscale[i][j])<<(qp_per-4);
}
}
if(!lossless_qpprime)
img->m7[j][i]=ilev;
}
ACLevel[scan_pos] = 0;
// IDCT.
// horizontal
if(!lossless_qpprime)
for (j=0; j < BLOCK_SIZE; j++)
{
for (i=0; i < BLOCK_SIZE; i++)
{
m5[i]=img->m7[j][i];
}
m6[0]=(m5[0]+m5[2]);
m6[1]=(m5[0]-m5[2]);
m6[2]=(m5[1]>>1)-m5[3];
m6[3]=m5[1]+(m5[3]>>1);
for (i=0; i < 2; i++)
{
i1=3-i;
img->m7[j][i]=m6[i]+m6[i1];
img->m7[j][i1]=m6[i]-m6[i1];
}
}
// vertical
if(!lossless_qpprime)
for (i=0; i < BLOCK_SIZE; i++)
{
for (j=0; j < BLOCK_SIZE; j++)
{
m5[j]=img->m7[j][i];
}
m6[0]=(m5[0]+m5[2]);
m6[1]=(m5[0]-m5[2]);
m6[2]=(m5[1]>>1)-m5[3];
m6[3]=m5[1]+(m5[3]>>1);
for (j=0; j < 2; j++)
{
j1=3-j;
img->m7[j][i] =(m6[j]+m6[j1]+DQ_ROUND)>>DQ_BITS;
img->m7[j1][i]=(m6[j]-m6[j1]+DQ_ROUND)>>DQ_BITS;
}
}
return nonzeroAC;
}
// Residue Color Transform
int dct_chroma_DC(int uv, int cr_cbp)
{
int run, scan_pos, coeff_ctr, level, i, j;
int* DCLevel = img->cofDC[uv+1][0];
int* DCRun = img->cofDC[uv+1][1];
run=-1;
scan_pos=0;
for (coeff_ctr=0; coeff_ctr < 16; coeff_ctr++)
{
i=SNGL_SCAN[coeff_ctr][0];
j=SNGL_SCAN[coeff_ctr][1];
run++;
level = absm(dc_level[uv][i][j]);
if (level != 0)
{
cr_cbp=max(1,cr_cbp);
DCLevel[scan_pos] = sign(level ,dc_level[uv][i][j]);
DCRun [scan_pos] = run;
scan_pos++;
run=-1;
}
}
DCLevel[scan_pos] = 0;
return cr_cbp;
}
/*!
************************************************************************
* \brief
* The routine performs transform,quantization,inverse transform, adds the diff.
* to the prediction and writes the result to the decoded luma frame. Includes the
* RD constrained quantization also.
*
* \par Input:
* block_x,block_y: Block position inside a macro block (0,4,8,12).
*
* \par Output:
* nonzero: 0 if no levels are nonzero. 1 if there are nonzero levels. \n
* coeff_cost: Counter for nonzero coefficients, used to discard expensive levels.
*
*
************************************************************************
*/
int dct_luma_sp(int block_x,int block_y,int *coeff_cost)
{
int sign(int a,int b);
int i,j,i1,j1,ilev,m5[4],m6[4],coeff_ctr;
int qp_const,level,scan_pos,run;
int nonzero;
int predicted_block[BLOCK_SIZE][BLOCK_SIZE],c_err,qp_const2;
int qp_per,qp_rem,q_bits;
int qp_per_sp,qp_rem_sp,q_bits_sp;
int pos_x = block_x >> BLOCK_SHIFT;
int pos_y = block_y >> BLOCK_SHIFT;
int b8 = 2*(pos_y >> 1) + (pos_x >> 1);
int b4 = 2*(pos_y & 0x01) + (pos_x & 0x01);
int* ACLevel = img->cofAC[b8][b4][0];
int* ACRun = img->cofAC[b8][b4][1];
Macroblock *currMB = &img->mb_data[img->current_mb_nr];
short is_field_mode = (img->field_picture || ( img->MbaffFrameFlag && currMB->mb_field));
// For encoding optimization
int c_err1, c_err2, level1, level2;
double D_dis1, D_dis2;
int len, info;
double lambda_mode = 0.85 * pow (2, (currMB->qp - SHIFT_QP)/3.0) * 4;
qp_per = (currMB->qp-MIN_QP)/6;
qp_rem = (currMB->qp-MIN_QP)%6;
q_bits = Q_BITS+qp_per;
qp_per_sp = (currMB->qpsp-MIN_QP)/6;
qp_rem_sp = (currMB->qpsp-MIN_QP)%6;
q_bits_sp = Q_BITS+qp_per_sp;
qp_const=(1<<q_bits)/6; // inter
qp_const2=(1<<q_bits_sp)/2; //sp_pred
// Horizontal transform
for (j=0; j< BLOCK_SIZE; j++)
for (i=0; i< BLOCK_SIZE; i++)
{
img->m7[j][i]+=img->mpr[j+block_y][i+block_x];
predicted_block[i][j]=img->mpr[j+block_y][i+block_x];
}
for (j=0; j < BLOCK_SIZE; j++)
{
for (i=0; i < 2; i++)
{
i1=3-i;
m5[i]=img->m7[j][i]+img->m7[j][i1];
m5[i1]=img->m7[j][i]-img->m7[j][i1];
}
img->m7[j][0]=(m5[0]+m5[1]);
img->m7[j][2]=(m5[0]-m5[1]);
img->m7[j][1]=m5[3]*2+m5[2];
img->m7[j][3]=m5[3]-m5[2]*2;
}
// Vertical transform
for (i=0; i < BLOCK_SIZE; i++)
{
for (j=0; j < 2; j++)
{
j1=3-j;
m5[j]=img->m7[j][i]+img->m7[j1][i];
m5[j1]=img->m7[j][i]-img->m7[j1][i];
}
img->m7[0][i]=(m5[0]+m5[1]);
img->m7[2][i]=(m5[0]-m5[1]);
img->m7[1][i]=m5[3]*2+m5[2];
img->m7[3][i]=m5[3]-m5[2]*2;
}
for (j=0; j < BLOCK_SIZE; j++)
{
for (i=0; i < 2; i++)
{
i1=3-i;
m5[i]=predicted_block[i][j]+predicted_block[i1][j];
m5[i1]=predicted_block[i][j]-predicted_block[i1][j];
}
predicted_block[0][j]=(m5[0]+m5[1]);
predicted_block[2][j]=(m5[0]-m5[1]);
predicted_block[1][j]=m5[3]*2+m5[2];
predicted_block[3][j]=m5[3]-m5[2]*2;
}
// Vertical transform
for (i=0; i < BLOCK_SIZE; i++)
{
for (j=0; j < 2; j++)
{
j1=3-j;
m5[j]=predicted_block[i][j]+predicted_block[i][j1];
m5[j1]=predicted_block[i][j]-predicted_block[i][j1];
}
predicted_block[i][0]=(m5[0]+m5[1]);
predicted_block[i][2]=(m5[0]-m5[1]);
predicted_block[i][1]=m5[3]*2+m5[2];
predicted_block[i][3]=m5[3]-m5[2]*2;
}
// Quant
nonzero=FALSE;
run=-1;
scan_pos=0;
for (coeff_ctr=0;coeff_ctr < 16;coeff_ctr++) // 8 times if double scan, 16 normal scan
{
if (is_field_mode)
{ // Alternate scan for field coding
i=FIELD_SCAN[coeff_ctr][0];
j=FIELD_SCAN[coeff_ctr][1];
}
else
{
i=SNGL_SCAN[coeff_ctr][0];
j=SNGL_SCAN[coeff_ctr][1];
}
run++;
ilev=0;
// decide prediction
// case 1
level1 = (absm (predicted_block[i][j]) * quant_coef[qp_rem_sp][i][j] + qp_const2) >> q_bits_sp;
level1 = (level1 << q_bits_sp) / quant_coef[qp_rem_sp][i][j];
c_err1 = img->m7[j][i]-sign(level1, predicted_block[i][j]);
level1 = (absm (c_err1) * quant_coef[qp_rem][i][j] + qp_const) >> q_bits;
// case 2
c_err2=img->m7[j][i]-predicted_block[i][j];
level2 = (absm (c_err2) * quant_coef[qp_rem][i][j] + qp_const) >> q_bits;
// select prediction
if ((level1 != level2) && (level1 != 0) && (level2 != 0))
{
D_dis1 = img->m7[j][i] - ((sign(level1,c_err1)*dequant_coef[qp_rem][i][j]*A[i][j]<< qp_per) >>6) - predicted_block[i][j];
levrun_linfo_inter(level1, run, &len, &info);
D_dis1 = D_dis1*D_dis1 + lambda_mode * len;
D_dis2 = img->m7[j][i] - ((sign(level2,c_err2)*dequant_coef[qp_rem][i][j]*A[i][j]<< qp_per) >>6) - predicted_block[i][j];
levrun_linfo_inter(level2, run, &len, &info);
D_dis2 = D_dis2 * D_dis2 + lambda_mode * len;
if (D_dis1 == D_dis2)
level = (absm(level1) < absm(level2)) ? level1 : level2;
else
{
if (D_dis1 < D_dis2)
level = level1;
else
level = level2;
}
c_err = (level == level1) ? c_err1 : c_err2;
}
else if (level1 == level2)
{
level = level1;
c_err = c_err1;
}
else
{
level = (level1 == 0) ? level1 : level2;
c_err = (level1 == 0) ? c_err1 : c_err2;
}
if (level != 0)
{
nonzero=TRUE;
if (level > 1)
*coeff_cost += MAX_VALUE; // set high cost, shall not be discarded
else
*coeff_cost += COEFF_COST[input->disthres][run];
ACLevel[scan_pos] = sign(level,c_err);
ACRun [scan_pos] = run;
++scan_pos;
run=-1; // reset zero level counter
ilev=((sign(level,c_err)*dequant_coef[qp_rem][i][j]*A[i][j]<< qp_per) >>6);
}
ilev+=predicted_block[i][j] ;
if(!si_frame_indicator && !sp2_frame_indicator)//stores the SP frame coefficients in lrec, will be useful to encode these and create SI or SP switching frame
{
lrec[img->pix_y+block_y+j][img->pix_x+block_x+i]=
sign((abs(ilev) * quant_coef[qp_rem_sp][i][j] + qp_const2) >> q_bits_sp, ilev);
}
img->m7[j][i] = sign((absm(ilev) * quant_coef[qp_rem_sp][i][j] + qp_const2)>> q_bits_sp, ilev) * dequant_coef[qp_rem_sp][i][j] << qp_per_sp;
}
ACLevel[scan_pos] = 0;
// IDCT.
// horizontal
for (j=0; j < BLOCK_SIZE; j++)
{
for (i=0; i < BLOCK_SIZE; i++)
{
m5[i]=i
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -