⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 text1.txt

📁 蚁群算法( ant colony algorithm) 是由意大利学者 Dorigo 等人[1 ,2 ] 于20 世纪90 年代初期通过模拟自然界 中蚂蚁集体寻径的行为而提出的一种基于种群的启
💻 TXT
字号:
#include <iostream> 
#include <fstream> 
#include <math.h> 
#include <time.h>  
using namespace std; 


const int iAntCount=34;//ant numbers 
const int iCityCount=51; 
const int iItCount=2000; 
const double Q=100; 
const double alpha=1; 
const double beta=5; 
const double rou=0.5; 

int besttour[iCityCount]; 

double  rnd(int low,double uper) 
{ 
 double p=(rand()/(double)RAND_MAX)*((uper)-(low))+(low); 

 return (p); 
}; 
int rnd(int uper) 
{ 
 return (rand()%uper); 
}; 

class GInfo 
{ 
public:  
 double m_dDeltTrial[iCityCount][iCityCount]; 
 double m_dTrial[iCityCount][iCityCount]; 
 double distance[iCityCount][iCityCount]; 
}; 


GInfo Map; 
class ant 
{ 
private: 
 int ChooseNextCity(); 
 double prob[iCityCount]; 
 int m_iCityCount; 
 int AllowedCity[iCityCount]; 
public: 
 void addcity(int city); 
 int tabu[iCityCount]; 
 void Clear(); 
 void UpdateResult(); 
 double m_dLength; 
 double m_dShortest; 
 void move(); 
 ant(); 
 void move2last(); 
}; 
void ant::move2last() 
{ 
 int i; 
 for(i=0;i<iCityCount;i++) 
  if (AllowedCity[i]==1) 
  { 
   addcity(i); 
   break; 
  } 
} 
void ant::Clear() 
{ 
 m_dLength=0; 
 int i; 
 for(i=0;i<iCityCount;i++) 
 { 
  prob[i]=0; 
  AllowedCity[i]=1; 
 } 
 i=tabu[iCityCount-1]; 
 m_iCityCount=0; 
 addcity(i); 
} 
ant::ant() 
{ 
 m_dLength=m_dShortest=0; 
 m_iCityCount=0; 
 int i; 
 for(i=0;i<iCityCount;i++) 
 { 
  AllowedCity[i]=1; 
  prob[i]=0; 
 } 
} 
void ant::addcity(int city) 
{ 
 //add city to tabu; 
 tabu[m_iCityCount]=city; 
 m_iCityCount++; 
 AllowedCity[city]=0; 
} 
int ant::ChooseNextCity() 
{ 
 //Update the probability of path selection 
 //select a path from tabu[m_iCityCount-1] to next 


 int i; 
 int j=10000; 
 double temp=0; 
 int curCity=tabu[m_iCityCount-1]; 
 for (i=0;i<iCityCount;i++) 
 { 
  if((AllowedCity[i]==1))  
  { 
   temp+=pow((1.0/Map.distance[curCity][i]),beta)*pow((Map.m_dTrial[curCity][i]),alpha); 
  } 
 } 
 double sel=0; 
 for (i=0;i<iCityCount;i++) 
 {   
  if((AllowedCity[i]==1)) 
  { 
   prob[i]=pow((1.0/Map.distance[curCity][i]),beta)*pow((Map.m_dTrial[curCity][i]),alpha)/temp; 
   sel+=prob[i]; 
  } 
  else  
   prob[i]=0; 
 } 
 double mRate=rnd(0,sel); 
 double mSelect=0; 

 for ( i=0;i<iCityCount;i++) 
 { 
  if((AllowedCity[i]==1)) 
   mSelect+=prob[i] ; 
  if (mSelect>=mRate) {j=i;break;} 
 } 

 if (j==10000) 
 { 
  temp=-1; 
  for (i=0;i<iCityCount;i++) 
  {  
   if((AllowedCity[i]==1)) 
    if (temp<pow((1.0/Map.distance[curCity][i]),beta)*pow((Map.m_dTrial[curCity][i]),alpha))      
    { 
     temp=pow((1.0/Map.distance[curCity][i]),beta)*pow((Map.m_dTrial[curCity][i]),alpha); 
     j=i; 
    } 
  } 
 } 

 return j; 

} 
void ant::UpdateResult() 
{ 
 // Update the length of tour 
 int i; 
 for(i=0;i<iCityCount-1;i++) 
  m_dLength+=Map.distance[tabu[i]][tabu[i+1]]; 
 m_dLength+=Map.distance[tabu[iCityCount-1]][tabu[0]]; 
} 
void ant::move() 
{ 
 //the ant move to next town and add town ID to tabu. 
 int j; 
 j=ChooseNextCity(); 
 addcity(j); 
} 
class project 
{ 
public: 

 void UpdateTrial(); 
 double m_dLength; 
 void initmap(); 
 
ant ants[iAntCount]; 
 void GetAnt(); 
 void StartSearch(); 
 project(); 
}; 
void project::UpdateTrial() 
{ 
 //calculate the changes of trial information 
 int i; 
 int j; 

 for(i=0;i<iAntCount;i++) 
 { 
  for (j=0;j<iCityCount-1;j++) 
  { 
   Map.m_dDeltTrial[ants[i].tabu[j]][ants[i].tabu[j+1]]+=Q/ants[i].m_dLength ; 
   Map.m_dDeltTrial[ants[i].tabu[j+1]][ants[i].tabu[j]]+=Q/ants[i].m_dLength; 
  } 
  Map.m_dDeltTrial[ants[i].tabu[iCityCount-1]][ants[i].tabu[0]]+=Q/ants[i].m_dLength; 
  Map.m_dDeltTrial[ants[i].tabu[0]][ants[i].tabu[iCityCount-1]]+=Q/ants[i].m_dLength; 
 } 
 for (i=0;i<iCityCount;i++) 
 { 
  for (j=0;j<iCityCount;j++) 
  { 
   Map.m_dTrial[i][j]=(rou*Map.m_dTrial[i][j]+Map.m_dDeltTrial[i][j] ); 
   Map.m_dDeltTrial[i][j]=0; 
  } 

 } 


} 
void project::initmap() 
{ 
 int i; 
 int j; 
 for(i=0;i<iCityCount;i++) 
  for (j=0;j<iCityCount;j++) 
  { 

   Map.m_dTrial[i][j]=1; 
   Map.m_dDeltTrial[i][j]=0; 
  } 
} 
project::project() 
{ 
 //initial map,read map infomation from file . et. 
 initmap(); 
 m_dLength=10e9; 


 ifstream in("eil51.tsp"); 

 struct city 
 { 
  int num; 
  int x; 
  int  y; 
 }cc[iCityCount]; 
  
 for (int i=0;i<iCityCount;i++) 
 { 
  in>>cc[i].num>>cc[i].x>>cc[i].y; 
  besttour[i]=0; 
 } 
 int j; 
 for(i=0;i<iCityCount;i++) 
  for (j=0;j<iCityCount;j++) 
  { 
   { 
    Map.distance[i][j]=sqrt(pow((cc[i].x-cc[j].x),2)+pow((cc[i].y-cc[j].y),2)); 
   } 
  } 


} 
void project::GetAnt() 
{ 
 //randomly put ant into map 
 int i=0; 
 int city; 
 srand( (unsigned)time( NULL ) +rand()); 
 for (i=0;i<iAntCount;i++) 
 { 
  city=rnd(iCityCount); 
  ants[i].addcity(city); 
 } 

} 
void project::StartSearch() 
{ 
 //begin to find best solution 
 int max=0;//every ant tours times 
 int i; 
 int j; 
 double temp; 
 int temptour[iCityCount]; 
 while (max<iItCount) 
 {   
  for(j=0;j<iAntCount;j++)  

  {  
   for (i=0;i<iCityCount-1;i++) 
    ants[j].move(); 
  } 

  for(j=0;j<iAntCount;j++)  
  { 
   ants[j].move2last(); 
   ants[j].UpdateResult (); 
  } 

  //find out the best solution of the step and put it into temp 
  int t; 
  temp=ants[0].m_dLength; 
  for (t=0;t<iCityCount;t++) 
   temptour[t]=ants[0].tabu[t]; 
  for(j=0;j<iAntCount;j++)  
  { 
   if (temp>ants[j].m_dLength) { 
    temp=ants[j].m_dLength; 
    for ( t=0;t<iCityCount;t++) 
     temptour[t]=ants[j].tabu[t]; 
   } 

  } 

  if(temp<m_dLength){ 
   m_dLength=temp; 
   for ( t=0;t<iCityCount;t++) 
    besttour[t]=temptour[t]; 
  } 
  printf("%d : %f\n",max,m_dLength); 
  UpdateTrial();  

  for(j=0;j<iAntCount;j++)  
   ants[j].Clear(); 

  max++; 

 } 
 printf("The shortest toure is : %f\n",m_dLength); 

 for ( int t=0;t<iCityCount;t++) 
  printf(" %d ",besttour[t]); 

} 
int main() 
{ 

 project TSP; 
 TSP.GetAnt(); 
 TSP.StartSearch(); 
 return 0; 
} 

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -