📄 ex8_2.m
字号:
% EX8_2.M Plot the Fourier series of the function f(t) % f(t)=0 -pi < t < 0% f(t)=t 0 < t < pi%% Plot f(t) for 5 and 20 terms in the seriescleart =[-pi:.031:pi]; % Time points for plottingsizet=size(t);fn = pi/4*(ones(sizet)); % Fourier approximation at each typlt=zeros(sizet); % for plot of f(t)% 5 termsfor n=1:5 fn=fn+ (1/pi)*(-2*cos((2*n-1)*t)/(2*n-1)^2)-((-1)^n*sin(n*t)/n); end %for k=1:length(t) % Create f(t) if t(k) < 0 yplt(k)=0; else yplt(k)=t(k); end endclf % Clear any figures subplot(2,1,1),plot(t,fn,t,yplt,'--');xlabel('t')ylabel('f(t)')title('Fourier series approximation to f(t) - Figure 8.2')legend(['N=',num2str(n)],'f(t)') % Annotate the graph% Add 15 more termsfor n=6:20 fn=fn+ (1/pi)*(-2*cos((2*n-1)*t)/(2*n-1)^2)-((-1)^n*sin(n*t)/n); endsubplot(2,1,2),plot(t,fn,t,yplt,'--');xlabel('t')ylabel('f(t)')legend(['N=',num2str(n)],'f(t)')%% Modify the program to compute an arbitrary number of terms % in the series (i.e. input n). Plot the graph for many terms % and notice the overshoot at the ends of the interval no matter% how many terms are taken.% (This is explained in the text as the Gibbs phenomenon.)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -