📄 ex4_18.m
字号:
% EX4_18.M Symbolic solution of second order differential equation% in terms of eigenvalues and eigenvectors% (This requires the Symbolic Math Toolbox)%A=sym('[-b/m1,b/m1;b/m2,-b/m1]')[V,E]=eig(sym(A))fprintf('Press a key to see m1=m2 solution \n')pause%% Let m1=m2=m and redo with symmetric matrix%Asymm=sym('[-b/m,b/m;b/m,-b/m]')[Vsymm,Esymm]=eig(sym(Asymm))%% The two eigenvalues here (0,-2*b/m) determine the time% response of the motion. The eigenvectors determine% the relative motion. The analysis is treated further% in Chapter 5.%% You can simplify the matrices since b multiplies every % element in the general case. Also, b/m is common for the% symmetrical case. %% Version 5 Replace eigsys(A) with eig(sym(A))
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -