⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 i960.c

📁 gcc编译工具没有什么特别
💻 C
📖 第 1 页 / 共 5 页
字号:
  if (current_function_args_size != 0 || varargs_stdarg_function)    fprintf (file, "\tmov	r3,g14\n");  /* Restore parameter registers.  */  for (i = 0, j = 4; i <= last_parm_reg; i += increment, j += increment)    {      if (i % 4 == 0 && (last_parm_reg - i) >= 3)	increment = 4;      else if (i % 4 == 0 && (last_parm_reg - i) >= 2)	increment = 3;      else if (i % 2 == 0 && (last_parm_reg - i) >= 1)	increment = 2;      else	increment = 1;      fprintf (file, "\tmov%s	r%d,g%d\n",	       (increment == 4 ? "q" : increment == 3 ? "t"		: increment == 2 ? "l": ""), j, i);    }}/* Output code for the function epilogue.  */voidi960_function_epilogue (file, size)     FILE *file;     unsigned int size;{  if (i960_leaf_ret_reg >= 0)    {      fprintf (file, "LR%d:	ret\n", ret_label);      return;    }  if (*epilogue_string == 0)    {      register rtx tmp;	      /* Emit a return insn, but only if control can fall through to here.  */      tmp = get_last_insn ();      while (tmp)	{	  if (GET_CODE (tmp) == BARRIER)	    return;	  if (GET_CODE (tmp) == CODE_LABEL)	    break;	  if (GET_CODE (tmp) == JUMP_INSN)	    {	      if (GET_CODE (PATTERN (tmp)) == RETURN)		return;	      break;	    }	  if (GET_CODE (tmp) == NOTE)	    {	      tmp = PREV_INSN (tmp);	      continue;	    }	  break;	}      fprintf (file, "LR%d:	ret\n", ret_label);      return;    }  fprintf (file, "LR%d:\n", ret_label);  fprintf (file, "\t#EPILOGUE#\n");  /* Output the string created by the prologue which will restore all     registers saved by the prologue.  */  if (epilogue_string[0] != '\0')    fprintf (file, "%s", epilogue_string);  /* Must clear g14 on return if this function set it.     Only varargs/stdarg functions modify g14.  */  if (VARARGS_STDARG_FUNCTION (current_function_decl))    fprintf (file, "\tmov	0,g14\n");  fprintf (file, "\tret\n");  fprintf (file, "\t#End Epilogue#\n");}/* Output code for a call insn.  */char *i960_output_call_insn (target, argsize_rtx, arg_pointer, insn)     register rtx target, argsize_rtx, arg_pointer, insn;{  int argsize = INTVAL (argsize_rtx);  rtx nexti = next_real_insn (insn);  rtx operands[2];  int varargs_stdarg_function    = VARARGS_STDARG_FUNCTION (current_function_decl);  operands[0] = target;  operands[1] = arg_pointer;  if (current_function_args_size != 0 || varargs_stdarg_function)    output_asm_insn ("mov	g14,r3", operands);  if (argsize > 48)    output_asm_insn ("lda	%a1,g14", operands);  else if (current_function_args_size != 0 || varargs_stdarg_function)    output_asm_insn ("mov	0,g14", operands);  /* The code used to assume that calls to SYMBOL_REFs could not be more     than 24 bits away (b vs bx, callj vs callx).  This is not true.  This     feature is now implemented by relaxing in the GNU linker.  It can convert     bx to b if in range, and callx to calls/call/balx/bal as appropriate.  */  /* Nexti could be zero if the called routine is volatile.  */  if (optimize && (*epilogue_string == 0) && argsize == 0 && tail_call_ok       && (nexti == 0 || GET_CODE (PATTERN (nexti)) == RETURN))    {      /* Delete following return insn.  */      if (nexti && no_labels_between_p (insn, nexti))	delete_insn (nexti);      output_asm_insn ("bx	%0", operands);      return "# notreached";    }  output_asm_insn ("callx	%0", operands);  /* If the caller sets g14 to the address of the argblock, then the caller     must clear it after the return.  */  if (current_function_args_size != 0 || varargs_stdarg_function)    output_asm_insn ("mov	r3,g14", operands);  else if (argsize > 48)    output_asm_insn ("mov	0,g14", operands);  return "";}/* Output code for a return insn.  */char *i960_output_ret_insn (insn)     register rtx insn;{  static char lbuf[20];    if (*epilogue_string != 0)    {      if (! TARGET_CODE_ALIGN && next_real_insn (insn) == 0)	return "";      sprintf (lbuf, "b	LR%d", ret_label);      return lbuf;    }  /* Must clear g14 on return if this function set it.     Only varargs/stdarg functions modify g14.  */  if (VARARGS_STDARG_FUNCTION (current_function_decl))    output_asm_insn ("mov	0,g14", 0);  if (i960_leaf_ret_reg >= 0)    {      sprintf (lbuf, "bx	(%s)", reg_names[i960_leaf_ret_reg]);      return lbuf;    }  return "ret";}#if 0/* Return a character string representing the branch prediction   opcode to be tacked on an instruction.  This must at least   return a null string.  */char *i960_br_predict_opcode (lab_ref, insn)     rtx lab_ref, insn;{  if (TARGET_BRANCH_PREDICT)    {      unsigned long label_uid;            if (GET_CODE (lab_ref) == CODE_LABEL)	label_uid = INSN_UID (lab_ref);      else if (GET_CODE (lab_ref) == LABEL_REF)	label_uid = INSN_UID (XEXP (lab_ref, 0));      else	return ".f";      /* If not optimizing, then the insn_addresses array will not be	 valid.  In this case, always return ".t" since most branches	 are taken.  If optimizing, return .t for backward branches	 and .f for forward branches.  */      if (! optimize	  || insn_addresses[label_uid] < insn_addresses[INSN_UID (insn)])	return ".t";      return ".f";    }      return "";}#endif/* Print the operand represented by rtx X formatted by code CODE.  */voidi960_print_operand (file, x, code)     FILE *file;     rtx x;     char code;{  enum rtx_code rtxcode = GET_CODE (x);  if (rtxcode == REG)    {      switch (code)	{	case 'D':	  /* Second reg of a double or quad.  */	  fprintf (file, "%s", reg_names[REGNO (x)+1]);	  break;	case 'E':	  /* Third reg of a quad.  */	  fprintf (file, "%s", reg_names[REGNO (x)+2]);	  break;	case 'F':	  /* Fourth reg of a quad.  */	  fprintf (file, "%s", reg_names[REGNO (x)+3]);	  break;	case 0:	  fprintf (file, "%s", reg_names[REGNO (x)]);	  break;	default:	  abort ();	}      return;    }  else if (rtxcode == MEM)    {      output_address (XEXP (x, 0));      return;    }  else if (rtxcode == CONST_INT)    {      HOST_WIDE_INT val = INTVAL (x);      if (code == 'C')	val = ~val;      if (val > 9999 || val < -999)	fprintf (file, "0x%x", val);      else	fprintf (file, "%d", val);      return;    }  else if (rtxcode == CONST_DOUBLE)    {      REAL_VALUE_TYPE d;      char dstr[30];      if (x == CONST0_RTX (GET_MODE (x)))	{	  fprintf (file, "0f0.0");	  return;	}      else if (x == CONST1_RTX (GET_MODE (x)))	{	  fprintf (file, "0f1.0");	  return;	}      REAL_VALUE_FROM_CONST_DOUBLE (d, x);      REAL_VALUE_TO_DECIMAL (d, "%#g", dstr);      fprintf (file, "0f%s", dstr);      return;    }  switch(code)    {    case 'B':      /* Branch or jump, depending on assembler.  */      if (TARGET_ASM_COMPAT)	fputs ("j", file);      else	fputs ("b", file);      break;    case 'S':      /* Sign of condition.  */      if ((rtxcode == EQ) || (rtxcode == NE) || (rtxcode == GTU)	  || (rtxcode == LTU) || (rtxcode == GEU) || (rtxcode == LEU))	fputs ("o", file);      else if ((rtxcode == GT) || (rtxcode == LT)	  || (rtxcode == GE) || (rtxcode == LE))	fputs ("i", file);      else	abort();      break;    case 'I':      /* Inverted condition.  */      rtxcode = reverse_condition (rtxcode);      goto normal;    case 'X':      /* Inverted condition w/ reversed operands.  */      rtxcode = reverse_condition (rtxcode);      /* Fallthrough.  */    case 'R':      /* Reversed operand condition.  */      rtxcode = swap_condition (rtxcode);      /* Fallthrough.  */    case 'C':      /* Normal condition.  */    normal:      if (rtxcode == EQ)  { fputs ("e", file); return; }      else if (rtxcode == NE)  { fputs ("ne", file); return; }      else if (rtxcode == GT)  { fputs ("g", file); return; }      else if (rtxcode == GTU) { fputs ("g", file); return; }      else if (rtxcode == LT)  { fputs ("l", file); return; }      else if (rtxcode == LTU) { fputs ("l", file); return; }      else if (rtxcode == GE)  { fputs ("ge", file); return; }      else if (rtxcode == GEU) { fputs ("ge", file); return; }      else if (rtxcode == LE)  { fputs ("le", file); return; }      else if (rtxcode == LEU) { fputs ("le", file); return; }      else abort ();      break;    case 0:      output_addr_const (file, x);      break;    default:      abort ();    }  return;}/* Print a memory address as an operand to reference that memory location.   This is exactly the same as legitimate_address_p, except that it the prints   addresses instead of recognizing them.  */voidi960_print_operand_addr (file, addr)     FILE *file;     register rtx addr;{  rtx breg, ireg;  rtx scale, offset;  ireg = 0;  breg = 0;  offset = 0;  scale = const1_rtx;  if (GET_CODE (addr) == REG)    breg = addr;  else if (CONSTANT_P (addr))    offset = addr;  else if (GET_CODE (addr) == PLUS)    {      rtx op0, op1;      op0 = XEXP (addr, 0);      op1 = XEXP (addr, 1);      if (GET_CODE (op0) == REG)	{	  breg = op0;	  if (GET_CODE (op1) == REG)	    ireg = op1;	  else if (CONSTANT_P (op1))	    offset = op1;	  else	    abort ();	}      else if (GET_CODE (op0) == PLUS)	{	  if (GET_CODE (XEXP (op0, 0)) == MULT)	    {	      ireg = XEXP (XEXP (op0, 0), 0);	      scale = XEXP (XEXP (op0, 0), 1);	      if (GET_CODE (XEXP (op0, 1)) == REG)		{		  breg = XEXP (op0, 1);		  offset = op1;		}	      else		abort ();	    }	  else if (GET_CODE (XEXP (op0, 0)) == REG)	    {	      breg = XEXP (op0, 0);	      if (GET_CODE (XEXP (op0, 1)) == REG)		{		  ireg = XEXP (op0, 1);		  offset = op1;		}	      else		abort ();	    }	  else	    abort ();	}      else if (GET_CODE (op0) == MULT)	{	  ireg = XEXP (op0, 0);	  scale = XEXP (op0, 1);	  if (GET_CODE (op1) == REG)	    breg = op1;	  else if (CONSTANT_P (op1))	    offset = op1;	  else	    abort ();	}      else	abort ();    }  else if (GET_CODE (addr) == MULT)    {      ireg = XEXP (addr, 0);      scale = XEXP (addr, 1);    }  else    abort ();  if (offset)    output_addr_const (file, offset);  if (breg)    fprintf (file, "(%s)", reg_names[REGNO (breg)]);  if (ireg)    fprintf (file, "[%s*%d]", reg_names[REGNO (ireg)], INTVAL (scale));}/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression   that is a valid memory address for an instruction.   The MODE argument is the machine mode for the MEM expression   that wants to use this address.	On 80960, legitimate addresses are:		base				ld	(g0),r0		disp	(12 or 32 bit)		ld	foo,r0		base + index			ld	(g0)[g1*1],r0		base + displ			ld	0xf00(g0),r0		base + index*scale + displ	ld	0xf00(g0)[g1*4],r0		index*scale + base		ld	(g0)[g1*4],r0		index*scale + displ		ld	0xf00[g1*4],r0		index*scale			ld	[g1*4],r0		index + base + displ		ld	0xf00(g0)[g1*1],r0	In each case, scale can be 1, 2, 4, 8, or 16.  *//* This is exactly the same as i960_print_operand_addr, except that   it recognizes addresses instead of printing them.   It only recognizes address in canonical form.  LEGITIMIZE_ADDRESS should   convert common non-canonical forms to canonical form so that they will   be recognized.  *//* These two macros allow us to accept either a REG or a SUBREG anyplace   where a register is valid.  */#define RTX_OK_FOR_BASE_P(X, STRICT)					\  ((GET_CODE (X) == REG							\    && (STRICT ? REG_OK_FOR_BASE_P_STRICT (X) : REG_OK_FOR_BASE_P (X)))	\   || (GET_CODE (X) == SUBREG						\       && GET_CODE (SUBREG_REG (X)) == REG				\       && (STRICT ? REG_OK_FOR_BASE_P_STRICT (SUBREG_REG (X))		\	   : REG_OK_FOR_BASE_P (SUBREG_REG (X)))))#define RTX_OK_FOR_INDEX_P(X, STRICT)					\  ((GET_CODE (X) == REG							\    && (STRICT ? REG_OK_FOR_INDEX_P_STRICT (X) : REG_OK_FOR_INDEX_P (X)))\   || (GET_CODE (X) == SUBREG						\       && GET_CODE (SUBREG_REG (X)) == REG				\       && (STRICT ? REG_OK_FOR_INDEX_P_STRICT (SUBREG_REG (X))		\	   : REG_OK_FOR_INDEX_P (SUBREG_REG (X)))))intlegitimate_address_p (mode, addr, strict)     enum machine_mode mode;     register rtx addr;     int strict;{  if (RTX_OK_FOR_BASE_P (addr, strict))    return 1;  else if (CONSTANT_P (addr))    return 1;  else if (GET_CODE (addr) == PLUS)    {      rtx op0, op1;      if (! TARGET_COMPLEX_ADDR && ! reload_completed)	return 0;      op0 = XEXP (addr, 0);      op1 = XEXP (addr, 1);      if (RTX_OK_FOR_BASE_P (op0, strict))	{	  if (RTX_OK_FOR_INDEX_P (op1, strict))	    return 1;	  else if (CONSTANT_P (op1))	    return 1;	  else	    return 0;	}      else if (GET_CODE (op0) == PLUS)	{	  if (GET_CODE (XEXP (op0, 0)) == MULT)	    {

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -