📄 readme
字号:
Ltree Documentation Joao Gama LIACC, FEP - University of PORTO jgama@ncc.up.pt Version 1 10/12/97Note: You are not able to distribute this Code without the permission of Joao Gama---------------------------------------------------------------------------Ltree is a system able to built multivariate trees by integrating a linear discriminant with a decision tree by means of constructive induction.--------------------------------------------------------------------------- This source code is supplied "as is" without warranty of any kind, and its author disclaim any and all warranties, including but not limited to any implied warranties of merchantability and fitness for a particular purpose, and any warranties or non infringement. The user assumes all liability and responsibility for use of this source code, and the author will be liable for damages of any kind resulting from its use. Without limiting the generality of the foregoing, the author warrant that the Source Code will be error-free, will operate without interruption, or will meet the needs of the user.---------------------------------------------------------------------------References:-----------J.Gama, "Probabilistic Linear Tree", in Proceedings of 14th International Conference on Machine Learning, 1997, Morgan KaufmannJ.Gama, "Oblique Linear Tree", in Proceedings of the 2th Intelligent Data Analysis, 1997 LNAI 1280, Springer VerlagIf you use the Ltree software in the context of any of yourpublications, please reference the above paper.---------------------------------------------------------------------------Installing Ltree:----------------You will need to create the Ltree image file: type: makeDirectory Data contains a sample training, test and domain file in the format that the program expects. They are called iris.data iris.domain and iris.test respectively. To test Ltree type the following: Ltree -f iris.data -u -v 3---------------------------------------------------------------------------To run Ltree:------------The Ltree code will run on UNIX machines. Options are specified on the input command line (some are required, others are optional).Required: -f <steam_name>Optional:FLAG PARAMETER RANGE Comments -u test on unseen examples stored at <steam_name>.test file -g Set Off Gain Ratio criteria. Uses Gain -m <integer> Minimum nr. of examples at one node -c <integer> [0,100] Level of pruning -s <integer> [1:100] Branch Factor -w <integer> [1:] Smoothing weight factor -v <integer> [1,2,3] Level of verbosity -k <integer> [1,...] Minimum ratio examples/attributes for generating LM -d <integer> [1,...] Maximum Depth for generating linear combinations -l <integer> Level of pruning of attributes on linear combinations---------------------------------------------------------------------------Example:---------localhost:~/Ltree/Distribution> Ltree -f irisDecision Tree: (Nodes: 5, Leaves: 3, Depth: 3, Errors: 2.000)petalwidth <= 0.800| setosa (50.00/0.00) [ 0.996 0.002 0.002 ]petalwidth > 0.800| Linear_7 <= -0.618| | virginica (50.00/1.00) [ 0.000 0.022 0.978 ]| Linear_7 > -0.618| | versicolor (50.00/1.00) [ 0.000 0.978 0.022 ]Linear_5 +18.241+10.976*[1]+20.124*[2]-29.025*[3]-39.088*[4]Linear_6 +31.525+3.213*[1]+3.510*[2]-7.538*[3]-14.764*[4]Linear_7 +530.189+3.559*[1]+7.070*[2]-7.854*[3]-13.388*[4]+511.957*[5]-511.958*[6]Linear Tree Learning Time: 0.02 (sec)---------------------------------------------------------------------------Ltree's output-------------Ltree outputs always the pruned decision tree obtained.When used to classify unseen examples, with the -u option,the user can control the verbosity level of the output,with the option -v <integer>.By default Ltree only outputs the error rate, nr. of errors and nr. of unseen examples.Increasing the verbose level, its possible to obtain:-a confusion matrix-how each example is classified -a probability class distribution for each example.---------------------------------------------------------------------------Input File Format:------------------The program expect at least, two text files:<problem>.data <problem>.domainWhen used to classify unseen examples, these must be in file<problem>.testThe file <problem>.domain contains information about the attributes, types and possible values.For each attribute must exist one line.The first information of this line must be the name of the attribute,followed by the character ":" and a list of the possible values,separated by commas. In the case of an attribute with real values it must be declared as continuous.The last line must contain the name of the class, followed by ":", followed by the value of the possible classes.For example: att1: continuous att2: a, b, c class:a,bDeclares a two class problem defined by two attributes.The class can take the values a and b.The first attribute takes real values, and the second attribute takes three values: a, b, cAll data files (train and test) must have the following format.Each example is on one line.Each line contains the attribute values in the same order asthey are declared on the "domain" file.The last value of each example is the class attribute.Missing values are specified by "?". The values for each attribute must be of one type. The permitted types are: symbolic and numeric. The numeric values can be integer or real. The program does not handle numeric values in exponent form; i.e., 1.2e3 ---------------------------------------------------------------------------Contents:---------drwxr-xr-x 2 jgama users 2048 May 8 18:31 Codedrwxr-xr-x 2 jgama users 1024 May 8 14:28 Datadrwxr-xr-x 2 jgama users 1024 May 8 11:30 Docs-rw-r--r-- 1 jgama users 5821 May 8 18:21 READMECode:total 132-rw-r--r-- 1 jgama users 13928 May 2 21:52 BuildTree.c-rw-r--r-- 1 jgama users 1968 May 8 14:27 BuildTree.h-rw-r--r-- 1 jgama users 17279 May 8 14:13 Ci_instances.c-rw-r--r-- 1 jgama users 4333 May 8 11:42 Ci_instances.h-rw-r--r-- 1 jgama users 2373 May 8 14:14 Combine.c-rw-r--r-- 1 jgama users 799 May 8 14:29 Combine.h-rw-r--r-- 1 jgama users 6238 May 2 21:54 Ltree.c-rw-r--r-- 1 jgama users 3213 May 2 21:54 Ltree_u.c-rw-r--r-- 1 jgama users 1357 May 2 22:03 Makefile-rw-r--r-- 1 jgama users 5012 May 7 18:55 classify.c-rw-r--r-- 1 jgama users 717 May 8 18:08 classify.h-rw-r--r-- 1 jgama users 17363 May 2 22:01 discrim.c-rw-r--r-- 1 jgama users 1059 May 8 22:25 discrim.h-rw-r--r-- 1 jgama users 7012 May 8 14:15 distributions.c-rw-r--r-- 1 jgama users 956 May 8 14:30 distributions.h-rw-r--r-- 1 jgama users 8064 May 8 14:16 entropia.c-rw-r--r-- 1 jgama users 1078 May 8 14:31 entropia.h-rw-r--r-- 1 jgama users 351 May 8 10:31 externs.i-rw-r--r-- 1 jgama users 3954 May 8 14:27 prune.c-rw-r--r-- 1 jgama users 764 May 8 14:31 prune.h-rw-r--r-- 1 jgama users 172 May 8 18:11 teste.c-rw-r--r-- 1 jgama users 7203 May 2 21:56 tree.c-rw-r--r-- 1 jgama users 2057 May 8 14:32 tree.h-rw-r--r-- 1 jgama users 9993 May 8 14:46 utils.c-rw-r--r-- 1 jgama users 2643 May 8 14:49 utils.hData:total 10-rw-r--r-- 1 jgama users 3800 May 7 18:59 iris-rw-r--r-- 1 jgama users 3427 May 7 18:59 iris.data-rw-r--r-- 1 jgama users 126 May 7 12:47 iris.domain-rw-r--r-- 1 jgama users 381 May 7 18:59 iris.testDocs:total 100-rw-r--r-- 1 jgama users 100732 May 29 11:29 ltree.ps.gz
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -