⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 pthreadthreads.cpp

📁 linux下的一款播放器
💻 CPP
字号:
/* ***** BEGIN LICENSE BLOCK ***** * Source last modified: $Id: pthreadthreads.cpp,v 1.7.2.3 2004/07/09 01:43:30 hubbe Exp $ *  * Portions Copyright (c) 1995-2004 RealNetworks, Inc. All Rights Reserved. *  * The contents of this file, and the files included with this file, * are subject to the current version of the RealNetworks Public * Source License (the "RPSL") available at * http://www.helixcommunity.org/content/rpsl unless you have licensed * the file under the current version of the RealNetworks Community * Source License (the "RCSL") available at * http://www.helixcommunity.org/content/rcsl, in which case the RCSL * will apply. You may also obtain the license terms directly from * RealNetworks.  You may not use this file except in compliance with * the RPSL or, if you have a valid RCSL with RealNetworks applicable * to this file, the RCSL.  Please see the applicable RPSL or RCSL for * the rights, obligations and limitations governing use of the * contents of the file. *  * Alternatively, the contents of this file may be used under the * terms of the GNU General Public License Version 2 or later (the * "GPL") in which case the provisions of the GPL are applicable * instead of those above. If you wish to allow use of your version of * this file only under the terms of the GPL, and not to allow others * to use your version of this file under the terms of either the RPSL * or RCSL, indicate your decision by deleting the provisions above * and replace them with the notice and other provisions required by * the GPL. If you do not delete the provisions above, a recipient may * use your version of this file under the terms of any one of the * RPSL, the RCSL or the GPL. *  * This file is part of the Helix DNA Technology. RealNetworks is the * developer of the Original Code and owns the copyrights in the * portions it created. *  * This file, and the files included with this file, is distributed * and made available on an 'AS IS' basis, WITHOUT WARRANTY OF ANY * KIND, EITHER EXPRESS OR IMPLIED, AND REALNETWORKS HEREBY DISCLAIMS * ALL SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET * ENJOYMENT OR NON-INFRINGEMENT. *  * Technology Compatibility Kit Test Suite(s) Location: *    http://www.helixcommunity.org/content/tck *  * Contributor(s): *  * ***** END LICENSE BLOCK ***** *///This is used to turn off threads in libc5 builds.#ifdef _UNIX_THREADS_SUPPORTED#include <errno.h>#include "hxtypes.h"#include "hxresult.h"#include <pthread.h>#include <sys/time.h>#include <semaphore.h>#include "pthreadthreads.h"//=======================================================================////                      HXPthreadThread//                   ----------------------////=======================================================================HXPthreadThread::HXPthreadThread()    : HXUnixThread(){}HXPthreadThread::~HXPthreadThread(){}HX_RESULT HXPthreadThread::_thread_create( ULONG32& ulThreadID, void*(pfExecFunc(void*)), void* pArg ){    HX_RESULT retVal = HXR_OK;    pthread_t threadID=0;    int nCode = pthread_create( &threadID, NULL, pfExecFunc, pArg );    ulThreadID = threadID;    if(nCode!=0)    {        ulThreadID = 0;        retVal = HXR_FAIL;        HX_ASSERT( "Failed to create thread"==NULL );    }    return retVal;}ULONG32 HXPthreadThread::_thread_self(){    return pthread_self();}void HXPthreadThread::_thread_exit(UINT32 unExitCode){    pthread_exit( (void*)unExitCode );}void HXPthreadThread::_thread_cancel(ULONG32 ulThreadID){    pthread_cancel( ulThreadID );}ULONG32 HXPthreadThread::_thread_join(ULONG32 ulThreadID){    void* pvRetVal = NULL;    pthread_join( ulThreadID, &pvRetVal );    return (ULONG32)(PTR_INT)pvRetVal;}//=======================================================================////                      HXPthreadMutex//                   ------------------////=======================================================================HXPthreadMutex::HXPthreadMutex()    : HXUnixMutex(),      m_ulOwnerThread(0),      m_ulLockCount(0){     memset(&m_mutex,       0, sizeof(m_mutex));     memset(&m_mtxLockLock, 0, sizeof(m_mtxLockLock));#ifdef _TIMEDWAITS_RECURSIVE_MUTEXES     pthread_mutexattr_t attr;     pthread_mutexattr_init( &attr );#ifdef PTHREAD_MUTEX_RECURSIVE_NP     pthread_mutexattr_settype( &attr, PTHREAD_MUTEX_RECURSIVE_NP );#else     pthread_mutexattr_settype( &attr, PTHREAD_MUTEX_RECURSIVE );#endif     pthread_mutex_init( &m_mutex, &attr );     pthread_mutexattr_destroy( &attr );#else          pthread_mutex_init( &m_mutex,NULL);     pthread_mutex_init( &m_mtxLockLock, NULL );#endif     }    HXPthreadMutex::~HXPthreadMutex(){    pthread_mutex_destroy( &m_mutex );#ifndef _TIMEDWAITS_RECURSIVE_MUTEXES        m_ulLockCount   = 0;    m_ulOwnerThread = 0;    pthread_mutex_destroy( &m_mtxLockLock );#endif    }    HX_RESULT HXPthreadMutex::_Lock(){    //We simulate recursive mutexes.    HX_RESULT res     = HXR_OK;    int       nResult = 0;#ifndef _TIMEDWAITS_RECURSIVE_MUTEXES        nResult = pthread_mutex_lock(&m_mtxLockLock);    if (nResult != 0 )    {        res = HXR_FAIL;        return res;    }            if( m_ulOwnerThread != pthread_self() )    {        pthread_mutex_unlock(&m_mtxLockLock);                //We are going to block for sure.        nResult = pthread_mutex_lock(&m_mutex);        //Take ownership.        if ( pthread_mutex_lock(&m_mtxLockLock) != 0 )        {            //This should not happen but if does then unlock the            //main mutex and return failure.            if ( nResult == 0 )            {                pthread_mutex_unlock(&m_mutex);            }             return HXR_FAIL;        }                        if ( nResult == 0 )        {             m_ulOwnerThread = pthread_self();             m_ulLockCount   = 1;        }        else        {            res = HXR_FAIL;        }    }    else    {        //We alread have it locked. Just increment the lock count        m_ulLockCount++;    }    pthread_mutex_unlock(&m_mtxLockLock);#else    pthread_mutex_lock(&m_mutex);#endif        return res;}    HX_RESULT HXPthreadMutex::_Unlock(){    HX_RESULT res     = HXR_OK;    int       nResult = 0;#ifndef _TIMEDWAITS_RECURSIVE_MUTEXES        nResult = pthread_mutex_lock(&m_mtxLockLock);    if ( nResult != 0 )    {        res = HXR_FAIL;        return res;    }        //Sanity checks.    HX_ASSERT( m_ulLockCount != 0 && m_ulOwnerThread == pthread_self() );    if( m_ulLockCount == 0 || m_ulOwnerThread!=pthread_self() )    {        pthread_mutex_unlock(&m_mtxLockLock);          return HXR_FAIL;    }            if( m_ulLockCount == 1 )    {        //We are really done with it. Do the real unlock now.        nResult = pthread_mutex_unlock(&m_mutex);        if ( nResult == 0 )        {            m_ulOwnerThread = 0;            m_ulLockCount=0;        }        else        {            res = HXR_FAIL;        }    }    else    {        m_ulLockCount--;    }    pthread_mutex_unlock(&m_mtxLockLock);#else    pthread_mutex_unlock(&m_mutex);#endif        return res;}    HX_RESULT HXPthreadMutex::_TryLock(){    HX_RESULT res = HXR_OK;        int       nResult = 0;#ifndef _TIMEDWAITS_RECURSIVE_MUTEXES        nResult = pthread_mutex_lock(&m_mtxLockLock);    if (nResult != 0 )    {        res = HXR_FAIL;        return res;    }        if( m_ulOwnerThread != pthread_self() )    {        nResult = pthread_mutex_trylock(&m_mutex);                        if ( nResult == 0 )        {            m_ulOwnerThread = pthread_self();            m_ulLockCount   = 1;        }        else        {            res = HXR_FAIL;        }    }    else    {        //We alread have it locked. Just increment the lock count        m_ulLockCount++;    }    pthread_mutex_unlock(&m_mtxLockLock);#else    nResult = pthread_mutex_trylock(&m_mutex);    if ( nResult != 0 )    {        res = HXR_FAIL;    }#endif        return res;}pthread_mutex_t* HXPthreadMutex::_GetPthreadMutex(){    return &m_mutex; }//=======================================================================////                   HXPthreadCondition//                   ----------------------////=======================================================================HXPthreadCondition::HXPthreadCondition(HXUnixMutex*& pMutex){    HX_ASSERT( pMutex == NULL );    //Create the mutex we need to associate with this cond.        m_pMutex = new HXPthreadMutex();    pMutex = (HXUnixMutex*)m_pMutex;    //Init our cond var.    pthread_cond_init( &m_cond, NULL );}HXPthreadCondition::~HXPthreadCondition(){    pthread_cond_destroy(&m_cond);    HX_DELETE( m_pMutex );}HX_RESULT HXPthreadCondition::_Signal(){    pthread_cond_signal(&m_cond);    return HXR_OK;}HX_RESULT HXPthreadCondition::_Broadcast(){    pthread_cond_broadcast(&m_cond);    return HXR_OK;}HX_RESULT HXPthreadCondition::_Wait(){    HX_ASSERT( m_pMutex );    //m_pMuex MUST BE LOCKED ALL READY!    pthread_cond_wait(&m_cond, m_pMutex->_GetPthreadMutex());    return HXR_OK;}HX_RESULT HXPthreadCondition::_TimedWait(UINT32 unTimeOut){    //m_pMuex MUST BE LOCKED ALL READY!    HX_RESULT       ret = HXR_OK;    struct timeval  now;    struct timespec timeout;    int             retcode;    gettimeofday(&now, NULL);    long int waitSeconds = unTimeOut/1000;    long int nanoSeconds = (unTimeOut-(waitSeconds*1000))*1000000;    timeout.tv_sec  = now.tv_sec+waitSeconds;    timeout.tv_nsec = now.tv_usec*1000+nanoSeconds;    if( timeout.tv_nsec >= 1000000000 )    {        timeout.tv_nsec -= 1000000000;        timeout.tv_sec  += 1;    }    retcode = pthread_cond_timedwait(&m_cond, m_pMutex->_GetPthreadMutex(), &timeout);        if(retcode==-1)    {        ret = HXR_FAIL;        //We really could use a HXR_TIMEDOUT.        if( errno == ETIMEDOUT )            ret = HXR_WOULD_BLOCK;    }    return ret;}#ifndef _MAC_UNIX//=======================================================================////                      HXPthreadSemaphore//                   ------------------////=======================================================================HXPthreadSemaphore::HXPthreadSemaphore(UINT32 unInitialCount)    : HXUnixSemaphore( unInitialCount ){    //Init the sem to non-shared and count passed in.    if( sem_init( &m_semaphore, 0, m_unInitialCount ) < 0 )    {#ifdef _DEBUG        fprintf( stderr, "Can't init semaphore: %d %s\n", errno, strerror(errno) );#endif    }}HXPthreadSemaphore::~HXPthreadSemaphore(){    sem_destroy( &m_semaphore );}HX_RESULT HXPthreadSemaphore::_Post(){    HX_RESULT retVal = HXR_OK;    //Init the sem to non-shared and count passed in.    if( sem_post(&m_semaphore) < 0 )    {#ifdef _DEBUG        fprintf( stderr, "Can't post to semaphore: %d %s\n", errno, strerror(errno) );#endif        retVal = HXR_FAIL;    }    return retVal;}HX_RESULT HXPthreadSemaphore::_Wait(){    //sem_wait always returns zero.    sem_wait( &m_semaphore );    return HXR_OK;}HX_RESULT HXPthreadSemaphore::_TryWait(){    HX_RESULT retVal  = HXR_OK;    int       nResult = 0;    nResult = sem_trywait( &m_semaphore );    if( nResult<0 && errno == EAGAIN )    {        retVal = HXR_WOULD_BLOCK;    }    else if( nResult < 0 )    {#ifdef _DEBUG        fprintf( stderr, "Can't wait on semaphore: %d %s\n", errno, strerror(errno) );#endif        retVal = HXR_FAIL;    }    return retVal;}// #ifdef _TIMEDWAITS_RECURSIVE_MUTEXES    // HX_RESULT HXPthreadSemaphore::_TimedWait(UINT32 unTimeOut )// {//     HX_RESULT ret = HXR_OK;//     struct timeval  now;//     struct timespec timeout;//     int retcode;//     gettimeofday(&now, NULL);//     long int waitSeconds = unTimeOut/1000;//     long int nanoSeconds = (unTimeOut-(waitSeconds*1000))*1000000;//     if( nanoSeconds >= 1000000000 )//     {//         nanoSeconds -= 1000000000;//         waitSeconds += 1;//     }    //     timeout.tv_sec  = now.tv_sec+waitSeconds;//     timeout.tv_nsec = now.tv_usec*1000+nanoSeconds;//     if( timeout.tv_nsec >= 1000000000 )//     {//         timeout.tv_nsec -= 1000000000;//         timeout.tv_sec  += 1;//     }//     //XXXgfw TEST TEST TEST//     retcode = sem_timedwait(&m_semaphore, &timeout);    //     if(retcode==-1)//     {//         ret = HXR_FAIL;//         //We really could use a HXR_TIMEDOUT.//         if( errno == ETIMEDOUT )//             ret = HXR_WOULD_BLOCK;//     }//     return ret;// }// #endif    HX_RESULT HXPthreadSemaphore::_GetValue( int* pnCount){    //sem_getvalue always returns zero.    sem_getvalue( &m_semaphore, pnCount );    return HXR_OK;}#else// now  the _MAC_UNIX case...//=======================================================================////                      HXPthreadMacSemaphore//                      ---------------------////=======================================================================HXPthreadMacSemaphore::HXPthreadMacSemaphore(UINT32 unInitialCount)    : HXUnixSemaphore( unInitialCount ){    //Init the sem to non-shared and count passed in.    char buf[32];    sprintf(buf, "%s", tmpnam(NULL));    sem_t* sem = sem_open(buf, O_CREAT, 0, m_unInitialCount);    if ((int)sem == SEM_FAILED)    {#ifdef _DEBUG        fprintf( stderr, "Can't open semaphore: %d %s\n", errno, strerror(errno) );#endif    }    else    {        m_semaphore = sem;    }}HXPthreadMacSemaphore::~HXPthreadMacSemaphore(){    if ( sem_close(m_semaphore) < 0 )    {#ifdef _DEBUG        fprintf( stderr, "Can't close semaphore: %d %s\n", errno, strerror(errno) );#endif    }}HX_RESULT HXPthreadMacSemaphore::_Post(){    HX_RESULT retVal = HXR_OK;    //Init the sem to non-shared and count passed in.    if( sem_post(m_semaphore) < 0 )    {#ifdef _DEBUG        fprintf( stderr, "Can't post to semaphore: %d %s\n", errno, strerror(errno) );#endif        retVal = HXR_FAIL;    }    return retVal;}HX_RESULT HXPthreadMacSemaphore::_Wait(){    //sem_wait always returns zero.    if ( sem_wait( m_semaphore ) < 0)    {#ifdef _DEBUG        fprintf( stderr, "sem_wait failed: %d %s\n", errno, strerror(errno) );#endif    }    return HXR_OK;}HX_RESULT HXPthreadMacSemaphore::_TryWait(){    HX_RESULT retVal  = HXR_OK;    int       nResult = 0;    nResult = sem_trywait( m_semaphore );    if( nResult<0 && errno == EAGAIN )    {        retVal = HXR_WOULD_BLOCK;    }    else if( nResult < 0 )    {#ifdef _DEBUG        fprintf( stderr, "Can't wait on semaphore: %d %s\n", errno, strerror(errno) );#endif        retVal = HXR_FAIL;    }    return retVal;}HX_RESULT HXPthreadMacSemaphore::_GetValue( int* pnCount){    //sem_getvalue always returns zero.    if ( sem_getvalue( m_semaphore, pnCount ) < 0 )    {#ifdef _DEBUG        fprintf( stderr, "sem_getvalue failed: %d %s\n", errno, strerror(errno) );#endif    }    return HXR_OK;}#endif // _MAC_UNIX#endif //_UNIX_THREADS_SUPPORTED

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -