⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 asmrulep.cpp

📁 linux下的一款播放器
💻 CPP
📖 第 1 页 / 共 3 页
字号:
/* ***** BEGIN LICENSE BLOCK ***** * Source last modified: $Id: asmrulep.cpp,v 1.14.2.3 2004/07/09 01:48:15 hubbe Exp $ *  * Portions Copyright (c) 1995-2004 RealNetworks, Inc. All Rights Reserved. *  * The contents of this file, and the files included with this file, * are subject to the current version of the RealNetworks Public * Source License (the "RPSL") available at * http://www.helixcommunity.org/content/rpsl unless you have licensed * the file under the current version of the RealNetworks Community * Source License (the "RCSL") available at * http://www.helixcommunity.org/content/rcsl, in which case the RCSL * will apply. You may also obtain the license terms directly from * RealNetworks.  You may not use this file except in compliance with * the RPSL or, if you have a valid RCSL with RealNetworks applicable * to this file, the RCSL.  Please see the applicable RPSL or RCSL for * the rights, obligations and limitations governing use of the * contents of the file. *  * Alternatively, the contents of this file may be used under the * terms of the GNU General Public License Version 2 or later (the * "GPL") in which case the provisions of the GPL are applicable * instead of those above. If you wish to allow use of your version of * this file only under the terms of the GPL, and not to allow others * to use your version of this file under the terms of either the RPSL * or RCSL, indicate your decision by deleting the provisions above * and replace them with the notice and other provisions required by * the GPL. If you do not delete the provisions above, a recipient may * use your version of this file under the terms of any one of the * RPSL, the RCSL or the GPL. *  * This file is part of the Helix DNA Technology. RealNetworks is the * developer of the Original Code and owns the copyrights in the * portions it created. *  * This file, and the files included with this file, is distributed * and made available on an 'AS IS' basis, WITHOUT WARRANTY OF ANY * KIND, EITHER EXPRESS OR IMPLIED, AND REALNETWORKS HEREBY DISCLAIMS * ALL SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET * ENJOYMENT OR NON-INFRINGEMENT. *  * Technology Compatibility Kit Test Suite(s) Location: *    http://www.helixcommunity.org/content/tck *  * Contributor(s): *  * ***** END LICENSE BLOCK ***** */// #include "hlxclib/stdio.h"      /* printf */#include "hxtypes.h"    /* Basic Types */#include "hlxclib/stdlib.h"#include "hxstrutl.h"#include "hxcom.h"      /* IUnknown */#include "ihxpckts.h"#include "asmrulep.h"	/* ASM Public Include File */#include "asmrulpp.h"	/* ASM Private Include File */#include "chxpckts.h"#define RULE_VAL_INFINITY -1#include "hxheap.h"/*#ifdef _DEBUG#undef HX_THIS_FILE		static const char HX_THIS_FILE[] = __FILE__;#endif*/static const char* const zpOpName[] ={    ">",    "<",    ">=",    "<=",    "==",    "!=",    "AND",    "OR"};ASMRuleExpression::ASMRuleExpression(const char* pExpression){    int temp;    char* pTemp = new char[temp = (strlen(pExpression) + 1)];    memcpy(pTemp, pExpression, temp); /* Flawfinder: ignore */    m_ulNumThresholds = 1; // always have one zero rule    m_pHead = Parse(pTemp, m_ulNumThresholds);    delete[] pTemp;}ASMRuleExpression::~ASMRuleExpression(){    RDelete(m_pHead);}/* Note:  This parse is destructive to pExpression */Node*ASMRuleExpression::Parse(char* pExpression, UINT32& ulNumThreshold){    char*	pTemp = pExpression;    int		PLevel = 0;    BOOL	bStripAgain = 1;    int		OperSize;    //printf ("Parse Expression: %s\n", pExpression);    // Strip outside unneccesary parens    while ((*pExpression == '(') && (bStripAgain))    {	for (pTemp = pExpression, PLevel = 0; *pTemp; pTemp++)	{	    if (*pTemp == '(')		PLevel++;	    if (*pTemp == ')')	    {		PLevel--;		if ((!(*(pTemp + 1))) && (!PLevel))		{		    pExpression++;		    pExpression[strlen(pExpression) - 1] = 0;		    bStripAgain = 1;		    break;		}		if (!PLevel)		{		    bStripAgain = 0;		    break;		}	    }	}    }    for (pTemp = pExpression, PLevel = 0; *pTemp; pTemp++)    {	if (*pTemp == '(')	    PLevel++;	if (*pTemp == ')')	    PLevel--;	if (!PLevel)	{	    OperSize = 1;	    if (((*pTemp == '>') || (*pTemp == '<')) ||	        ((*pTemp == '=') || (*pTemp == '!')) ||	        ((*pTemp == '&') || (*pTemp == '|')))	    {		OperatorNode* pNode = new OperatorNode;		pNode->m_Type = HX_RE_OPERATOR;		switch (*pTemp)		{		case '>':		    if ((*(pTemp + 1)) == '=')		    {			pNode->m_Data = HX_RE_GREATEREQUAL;			OperSize = 2;		    }		    else			pNode->m_Data = HX_RE_GREATER;		    break;		case '<':		    if ((*(pTemp + 1)) == '=')		    {			pNode->m_Data = HX_RE_LESSEQUAL;			OperSize = 2;		    }		    else			pNode->m_Data = HX_RE_LESS;		    break;		case '=':		    if ((*(pTemp + 1)) == '=')		    {			pNode->m_Data = HX_RE_EQUAL;			OperSize = 2;		    }		    break;		case '!':		    if ((*(pTemp + 1)) == '=')		    {			pNode->m_Data = HX_RE_NOTEQUAL;			OperSize = 2;		    }		    break;		case '&':		    if ((*(pTemp + 1)) == '&')		    {			pNode->m_Data = HX_RE_AND;			OperSize = 2;		    }		    break;		case '|':		    if ((*(pTemp + 1)) == '|')		    {			pNode->m_Data = HX_RE_OR;			OperSize = 2;		    }		    break;		default:		    break;		};		*pTemp = 0;		pNode->m_pLeft  = Parse(pExpression, ulNumThreshold);		pNode->m_pRight = Parse(pTemp + OperSize, ulNumThreshold);		return pNode;	    }	}    }    for (pTemp = pExpression, PLevel = 0; *pTemp; pTemp++)    {	if (*pTemp == '(')	    PLevel++;	if (*pTemp == ')')	    PLevel--;	if (!PLevel)	{	    if (*pTemp == '$')	    {		VariableNode* pNode = new VariableNode;		pNode->m_Type = HX_RE_VARIABLE;		pNode->m_Data = new char[strlen(pTemp)];		memcpy(pNode->m_Data, pTemp + 1, strlen(pTemp)); /* Flawfinder: ignore */		pNode->m_pLeft  = 0;		pNode->m_pRight = 0;		ulNumThreshold++; // each open variable means one more threshold.		return pNode;	    }	}    }    for (pTemp = pExpression, PLevel = 0; *pTemp; pTemp++)    {	if (*pTemp == '(')	    PLevel++;	if (*pTemp == ')')	    PLevel--;	if (!PLevel)	{	    if  ((*pTemp == '0') || (*pTemp == '1') || (*pTemp == '2') ||		 (*pTemp == '3') || (*pTemp == '4') || (*pTemp == '5') ||		 (*pTemp == '6') || (*pTemp == '7') || (*pTemp == '8') ||		 (*pTemp == '9'))	    {		if (strchr(pTemp, '.'))		{		    FloatNode* pNode = new FloatNode;		    pNode->m_Type = HX_RE_FLOAT;		    pNode->m_Data = (float)atof(pTemp);		    pNode->m_pLeft  = 0;		    pNode->m_pRight = 0;		    return pNode;		}		else		{		    IntegerNode* pNode = new IntegerNode;		    pNode->m_Type = HX_RE_INTEGER;		    pNode->m_Data = atoi(pTemp);		    pNode->m_pLeft  = 0;		    pNode->m_pRight = 0;		    return pNode;		}	    }	}    }    //printf ("Panic: Bad rule\n");    return 0;}voidASMRuleExpression::Dump(){    //printf ("Dumping ASMRuleExpression:\n");    RDump(m_pHead);    //printf ("\n");}voidASMRuleExpression::RDump(Node* pNode){    if (!pNode)	return;#if 0    switch(pNode->m_Type)    {    case HX_RE_VARIABLE:	printf ("   Variable: %s\n", ((VariableNode *)pNode)->m_Data);	break;    case HX_RE_INTEGER:	printf ("   Integer: %d\n", ((IntegerNode *)pNode)->m_Data);	break;    case HX_RE_FLOAT:	printf ("   Float: %f\n", ((FloatNode *)pNode)->m_Data);	break;    case HX_RE_OPERATOR:	printf ("   Operator: %s\n",	    zpOpName[((OperatorNode *)pNode)->m_Data]);	break;    }#endif    RDump(pNode->m_pLeft);    RDump(pNode->m_pRight);}voidASMRuleExpression::RDelete(Node* pNode){    if (!pNode)	return;    if (pNode->m_Type == HX_RE_VARIABLE)    {	HX_VECTOR_DELETE(((VariableNode *)pNode)->m_Data);    };    RDelete(pNode->m_pLeft);    RDelete(pNode->m_pRight);    delete pNode;}/* * This is a recursive expression evaluator that will determine whether * or not we are subscribed to a particular rule, given the current conditions */ floatASMRuleExpression::REvaluate(Node* pNode, IHXValues* pVars){    if (!pNode)        return (float)0;    switch(pNode->m_Type)    {    case HX_RE_VARIABLE:	{	    IHXBuffer* pValue=NULL;            float nValue = (float)0;	    pVars->GetPropertyCString(((VariableNode *)pNode)->m_Data, pValue);	    if (pValue)	    {                nValue = (float)atof((const char *)pValue->GetBuffer());		pValue->Release();	    }	    return nValue;	}    case HX_RE_INTEGER:        return (float)((IntegerNode *)pNode)->m_Data;	break;    case HX_RE_FLOAT:	return ((FloatNode *)pNode)->m_Data;	break;    case HX_RE_OPERATOR:	{	    float Left  = REvaluate(pNode->m_pLeft,  pVars); 	    float Right = REvaluate(pNode->m_pRight, pVars); 	    switch (((OperatorNode *)pNode)->m_Data)	    {	    case HX_RE_GREATEREQUAL:                return (float)(Left >= Right);		break;	    case HX_RE_GREATER:                return (float)(Left > Right);		break;            case HX_RE_LESSEQUAL:		if( Right == RULE_VAL_INFINITY )		{		    return (float)TRUE;		}                return (float)(Left <= Right);		break;	    case HX_RE_LESS:		if( Right == RULE_VAL_INFINITY )		{		    return (float)TRUE;		}                return (float)(Left < Right);		break;	    case HX_RE_EQUAL:                return (float)(Left == Right);		break;	    case HX_RE_NOTEQUAL:                return (float)(Left != Right);		break;	    case HX_RE_AND:                return (float)(Left && Right);		break;	    case HX_RE_OR:                return (float)(Left || Right);		break;            default:                HX_ASSERT(0);                return (float)0;                break;	    }	}	break;    default:        HX_ASSERT(0);        return (float)0;        break;    }}BOOLASMRuleExpression::Evaluate(IHXValues* pVars){    BOOL res;    //printf ("Evaluate ASMRuleExpression:\n");    res = (BOOL)REvaluate(m_pHead, pVars);    //printf ("%d\n", res);    return res;}/* * This is a recursive function which will evaluate a tree with one free * variable (pPrevar).  The returned array will contain all possible values * that are border cases. */floatASMRuleExpression::RPreEvaluate(Node* pNode, IHXValues* pVars,				const char* pPreVar, float*& pThreshold,				UINT32& ulNumThreshold,				BOOL& bInvolvesTheOpenVariable){    bInvolvesTheOpenVariable = FALSE;    float retval = 0;    float* pThresholdL = NULL;    float* pThresholdR = NULL;#define RETURN(x) retval = x; goto exitpoint;    if (!pNode)        return (float)0;    switch(pNode->m_Type)    {    case HX_RE_VARIABLE:	{	    IHXBuffer* pValue=NULL;            float nValue = (float)0;	    pVars->GetPropertyCString(((VariableNode *)pNode)->m_Data, pValue);	    if (pValue)	    {                nValue = (float)atof((const char *)pValue->GetBuffer());		pValue->Release();	    }	    if (strcasecmp(((VariableNode *)pNode)->m_Data, pPreVar) == 0)	    {		bInvolvesTheOpenVariable = TRUE;	    }	    return nValue;	}    case HX_RE_INTEGER:        return (float)((IntegerNode *)pNode)->m_Data;	break;    case HX_RE_FLOAT:	return ((FloatNode *)pNode)->m_Data;	break;    case HX_RE_OPERATOR:	{	    BOOL bInvolveL, bInvolveR;	    UINT32 ulNumThresholdL = 0;	    pThresholdL = pThreshold;	    float Left  = RPreEvaluate(pNode->m_pLeft,  pVars, pPreVar,			    pThresholdL, ulNumThresholdL, bInvolveL);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -