📄 mixengine.cpp
字号:
/* ***** BEGIN LICENSE BLOCK ***** * Source last modified: $Id: mixengine.cpp,v 1.9.8.2 2004/07/09 02:08:08 hubbe Exp $ * * Portions Copyright (c) 1995-2004 RealNetworks, Inc. All Rights Reserved. * * The contents of this file, and the files included with this file, * are subject to the current version of the RealNetworks Public * Source License (the "RPSL") available at * http://www.helixcommunity.org/content/rpsl unless you have licensed * the file under the current version of the RealNetworks Community * Source License (the "RCSL") available at * http://www.helixcommunity.org/content/rcsl, in which case the RCSL * will apply. You may also obtain the license terms directly from * RealNetworks. You may not use this file except in compliance with * the RPSL or, if you have a valid RCSL with RealNetworks applicable * to this file, the RCSL. Please see the applicable RPSL or RCSL for * the rights, obligations and limitations governing use of the * contents of the file. * * Alternatively, the contents of this file may be used under the * terms of the GNU General Public License Version 2 or later (the * "GPL") in which case the provisions of the GPL are applicable * instead of those above. If you wish to allow use of your version of * this file only under the terms of the GPL, and not to allow others * to use your version of this file under the terms of either the RPSL * or RCSL, indicate your decision by deleting the provisions above * and replace them with the notice and other provisions required by * the GPL. If you do not delete the provisions above, a recipient may * use your version of this file under the terms of any one of the * RPSL, the RCSL or the GPL. * * This file is part of the Helix DNA Technology. RealNetworks is the * developer of the Original Code and owns the copyrights in the * portions it created. * * This file, and the files included with this file, is distributed * and made available on an 'AS IS' basis, WITHOUT WARRANTY OF ANY * KIND, EITHER EXPRESS OR IMPLIED, AND REALNETWORKS HEREBY DISCLAIMS * ALL SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET * ENJOYMENT OR NON-INFRINGEMENT. * * Technology Compatibility Kit Test Suite(s) Location: * http://www.helixcommunity.org/content/tck * * Contributor(s): * * ***** END LICENSE BLOCK ***** */#include "hlxclib/limits.h"#include "hlxclib/math.h"#include "hxtypes.h"#include "hxresult.h"#include "hxassert.h"#include "mixengine.h"#ifdef HELIX_FEATURE_RESAMPLER#include "RAResampler.h"#endif#ifdef HELIX_FEATURE_GAINTOOL#include "gain.h"#endif#ifdef HELIX_FEATURE_CROSSFADE#include "xfade.h"#endif#ifdef HELIX_FEATURE_LIMITER#include "limiter.h"#endif#include "math64.h"/* DSP is done in four stages: - input (1) - downmix (2) - resample (3) - mix into output buffer (4) In the general case, the number of samples/call in pipes (1)-(4) will be different. In the code below, nSamples_X denotes the number of samples flowing in pipe (X) For example, say the input is 44100 stereo, and the output is 22050 3-channel, and for some reason we want to downmix to mono before going through the resampler. if nSamples_4 == 3 * 22050 (1 seconds' worth of data), then nSamples_3 = nSamples_4 / 3 = 22050 nSamples_2 = nSamples_3 * 44100/22050 = 44100 nSamples_1 = nSamples_2 * 2 / 1 = 88200 (1 seconds' worth of data on the input); For convenience, we might also count sample frames; that's samples_X/nChannels_X All variables are postfixed by a indicator of where they are relevant; for example, m_nChannels_2 is the number of channels after downmixing, and m_pBuffer3 is the output buffer for the resampler. */HXAudioSvcMixEngine::HXAudioSvcMixEngine(): m_pResampler(0), m_pXFader(0), m_pGaintool(0), m_pLimiter(0), m_pBuffer_1(0), m_pBuffer_3(0), m_ulBytesPerSample(2), m_eCrossFadeDirection(FADE_OUT){}HXAudioSvcMixEngine::~HXAudioSvcMixEngine(){ releaseResources() ;}void HXAudioSvcMixEngine::releaseResources(){ if (m_pBuffer_1) delete[] m_pBuffer_1 ; m_pBuffer_1 = 0 ; if (m_pBuffer_3) delete[] m_pBuffer_3 ; m_pBuffer_3 = 0 ;#ifdef HELIX_FEATURE_RESAMPLER if (m_pResampler) delete m_pResampler ; m_pResampler = 0 ;#endif /* HELIX_FEATURE_RESAMPLER */#ifdef HELIX_FEATURE_GAINTOOL if (m_pGaintool) gainFree(m_pGaintool); m_pGaintool = 0 ;#endif#ifdef HELIX_FEATURE_CROSSFADE if (m_pXFader) XFader_free(m_pXFader) ; m_pXFader = 0 ;#endif#ifdef HELIX_FEATURE_LIMITER if (m_pLimiter) LimiterFree(m_pLimiter); m_pLimiter = 0 ;#endif}HX_RESULT HXAudioSvcMixEngine::SetSampleConverter(CAudioSvcSampleConverter *pCvt){ m_pCvt = pCvt ; return pCvt ? HXR_OK : HXR_FAIL ;}HX_RESULT HXAudioSvcMixEngine::SetupResamplerAndBuffers(void){ if (m_ulSampleRate_1_2 == m_ulSampleRate_3_4) { // no resampling. m_ulChunkSize_1 = BATCHSIZE ; m_ulChunkSize_1 -= m_ulChunkSize_1 % m_nChannels_1 ; m_ulChunkSize_3 = m_ulChunkSize_1 / m_nChannels_1 * m_nChannels_2_3 ; } else {#ifdef HELIX_FEATURE_RESAMPLER HX_RESULT res = RAExactResampler::Create(&m_pResampler, m_ulSampleRate_1_2, m_ulSampleRate_3_4, m_nChannels_2_3, NBITS_PER_AUDIOSAMPLE == 32 ? RAExactResampler::_INT32 : RAExactResampler::_INT16) ; if (FAILED(res)) return res ; // determine the chunk sizes on resampler input and output. The side with the higher // datarate limits the other side if (m_nChannels_1 * m_ulSampleRate_1_2 <= m_nChannels_2_3 * m_ulSampleRate_3_4) { // downstream (right) side limits size m_ulChunkSize_3 = BATCHSIZE ; m_ulChunkSize_3 -= m_ulChunkSize_3 % m_nChannels_2_3 ; m_ulChunkSize_1 = m_pResampler->GetMinInput(m_ulChunkSize_3) ; m_ulChunkSize_1 = m_ulChunkSize_1 / m_nChannels_2_3 * m_nChannels_1 ; } else { // upstream side limits size m_ulChunkSize_1 = BATCHSIZE ; m_ulChunkSize_1 -= m_ulChunkSize_1 % m_nChannels_1 ; m_ulChunkSize_3 = m_pResampler->GetMaxOutput(m_ulChunkSize_1 / m_nChannels_1 * m_nChannels_2_3) ; while ((unsigned)m_pResampler->GetMinInput(m_ulChunkSize_3) / m_nChannels_2_3 * m_nChannels_1 > m_ulChunkSize_1) { m_ulChunkSize_3 -= m_nChannels_2_3 ; } } m_ulBufferSize_3 = m_ulChunkSize_3 + m_pResampler->GetMaxOutput(m_nChannels_2_3) ;#else return HXR_NOTIMPL ; // resampler not implemented#endif } // delay allocation of sample buffers until they are really needed. return HXR_OK ;}HX_RESULT HXAudioSvcMixEngine::Init(INT32 sampleRateIn, INT32 sampleRateOut, INT32 nChannelsIn, INT32 nChannelsOut){ HX_RESULT res = HXR_OK; // if we have any old resources, release them releaseResources() ; m_ulSampleRate_1_2 = sampleRateIn ; m_ulSampleRate_3_4 = sampleRateOut ; m_nChannels_1 = nChannelsIn ; m_nChannels_4 = nChannelsOut ; res = SetupUpDownmix() ; if (FAILED(res)) return res ; res = SetupResamplerAndBuffers() ; if (FAILED(res)) return res ;#ifdef HELIX_FEATURE_GAINTOOL m_pGaintool = gainInit(m_ulSampleRate_1_2, m_nChannels_2_3, 0) ; gainSetTimeConstant(100, m_pGaintool) ; gainSetImmediate(0.0, m_pGaintool) ;#endif#ifdef HELIX_FEATURE_CROSSFADE m_pXFader = XFader_init(m_ulSampleRate_1_2, m_nChannels_2_3, XFader_sin2tab) ;#endif ResetTimeLineInMillis(0) ; return HXR_OK ;}HX_RESULT HXAudioSvcMixEngine::ResetTimeLineInMillis(INT64 millis){ m_nOutputSamplesLeft_3 = 0 ; m_ulResamplerPhase = 0; // set the cross fade state to fade in, and the time so that we are post the fade in. m_llFadeStart = INT_MIN ; // or something really small m_eCrossFadeDirection = FADE_OUT ; m_bPastXFade = FALSE ; // sample frames, output side m_llTimestamp_1 = m_llTimestamp_3 = millis * m_ulSampleRate_3_4 / 1000 ; // llBufTimeInSamples / m_nChannels_4 ; // correct for resampler delay#ifdef HELIX_FEATURE_RESAMPLER if (m_pResampler) m_llTimestamp_1 -= m_pResampler->GetDelay() ;#endif // convert to input side, samples m_llTimestamp_1 = m_llTimestamp_1 * m_ulSampleRate_1_2 / m_ulSampleRate_3_4 * m_nChannels_1 ; // convert to samples m_llTimestamp_3 *= m_nChannels_2_3 ; return HXR_OK ;}void HXAudioSvcMixEngine::GetMixRange(UINT32 nBytesToMix, INT64& llStart, INT64& llEnd) const{ llStart = m_llTimestamp_1 ; // number of samples at resampler output INT32 n = nBytesToMix / (m_ulBytesPerSample * m_nChannels_4) * m_nChannels_2_3 ;#ifdef HELIX_FEATURE_RESAMPLER if (m_pResampler) n = m_pResampler->GetMinInput(n - m_nOutputSamplesLeft_3) ;#endif // number of samples at input n = n / m_nChannels_2_3 * m_nChannels_1 ; llEnd = llStart + n ;}INT64 HXAudioSvcMixEngine::GetNextMixTimeMillis(void) const{ return INT64(1000) * m_llTimestamp_1 / (m_ulSampleRate_1_2 * m_nChannels_1) ;}HX_RESULT HXAudioSvcMixEngine::SetOutputBytesPerSample(UINT32 bps){ switch (bps) { case 2: case 4: m_ulBytesPerSample = bps ; return HXR_OK ; default: return HXR_FAIL ; }}#ifdef HELIX_FEATURE_GAINTOOL// set the volume. This is in tenth of a dB. 0 == unity gain, 6dB = twice as loud, -6 = half as loudHX_RESULT HXAudioSvcMixEngine::SetVolume(INT32 tenthOfDB, BOOL bImmediate){ // currently, no amplification is allowed if (tenthOfDB > 0) return HXR_FAIL ; if (bImmediate) gainSetImmediate(0.1f * tenthOfDB, m_pGaintool) ; else gainSetSmooth(0.1f * tenthOfDB, m_pGaintool) ; return HXR_OK ;}INT32 HXAudioSvcMixEngine::HXVolume2TenthOfDB(INT32 vol){ // if HX_MAX_VOLUME changes from 100, need to re-generate the table below. // here is the formula: // if (vol > 0) return (INT32)(100.0 * log10((float)vol / HX_MAX_VOLUME )) ; // else return -2000 ;#define HX_MAX_VOLUME 100 static const unsigned char vol2TenthOfDb[HX_MAX_VOLUME+1] = { 255,
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -