⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mysvm.htm

📁 介绍支持向量机SVM介绍的参考文献以及程序源代码
💻 HTM
📖 第 1 页 / 共 2 页
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!-- saved from url=(0048)http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/ -->
<!-- header mySVM --><HTML><HEAD><TITLE>mySVM</TITLE>
<META content="text/html; charset=gb2312" http-equiv=Content-Type>
<META content="MSHTML 5.00.2920.0" name=GENERATOR></HEAD>
<BODY bgColor=#ffffff><A name=top></A><!--- Header table --->
<TABLE bgColor=#eeeeee border=0 cellPadding=0 cellSpacing=0 width="100%">
  <COLGROUP>
  <COL width="20%">
  <COL width="70%">
  <COL width="10%"></COLGROUP>
  <TBODY>
  <TR>
    <TD rowSpan=2 width="20%"><A 
      href="http://www-ai.cs.uni-dortmund.de/logo.html"><IMG border=0 
      src="mySVM.files/eier_graybg.gif"></A></TD>
    <TD bgColor=#99cdff width="70%"><A href="http://www.uni-dortmund.de/" 
      target=_top><IMG alt="University of Dortmund" border=0 
      src="mySVM.files/balken_le.gif"></A></TD>
    <TD align=right bgColor=#eeeeee width="10%"><A 
      href="http://www.uni-dortmund.de/" target=_top><IMG alt=UniDo-Logo 
      border=0 src="mySVM.files/balken_ro.gif"></A></TD></TR>
  <TR>
    <TD><A href="http://www.cs.uni-dortmund.de/" target=_top><IMG 
      alt="Computer Science" border=0 src="mySVM.files/cs.gif"></A> <A 
      href="http://www-ai.cs.uni-dortmund.de/" target=_top><IMG 
      alt="Artificial Intelligence" border=0 src="mySVM.files/ai.gif"></A></TD>
    <TD align=right vAlign=top><A href="http://www.uni-dortmund.de/" 
      target=_top><IMG alt=UniDo-Logo border=0 
      src="mySVM.files/balken_ru.gif"></A></TD></TR>
  <TR>
    <TD bgColor=#eeeeee colSpan=3 height=5>&nbsp;<!--- spacer trick --></TD></TR><!--- XX button row -->
  <TR>
    <TD bgColor=#99cdff colSpan=2 height=25 noWrap vAlign=bottom><A 
      href="http://www-ai.cs.uni-dortmund.de/index.eng.html" 
      onmousedown="imgClick('img_ls8news'); return true" 
      onmouseout="imgNormal('img_ls8news'); return true" 
      onmouseover="imgOver('img_ls8news'); return true"><IMG alt="LS8 News" 
      border=0 height=25 name=img_ls8news src="mySVM.files/ls8news.gif" 
      width=77></A> &nbsp; <A 
      href="http://www-ai.cs.uni-dortmund.de/FORSCHUNG/index.eng.html" 
      onmousedown="imgClick('img_forschung'); return true" 
      onmouseout="imgNormal('img_forschung'); return true" 
      onmouseover="imgOver('img_forschung'); return true"><IMG alt=Research 
      border=0 height=25 name=img_forschung src="mySVM.files/forschung.eng.gif" 
      width=82></A><A 
      href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/index.eng.html" 
      onmousedown="imgClick('img_software'); return true" 
      onmouseout="imgNormal('img_software'); return true" 
      onmouseover="imgOver('img_software'); return true"><IMG alt=Software 
      border=0 height=25 name=img_software src="mySVM.files/software.gif" 
      width=83></A><A 
      href="http://www-ai.cs.uni-dortmund.de/PARTNER/index.eng.html" 
      onmousedown="imgClick('img_partner'); return true" 
      onmouseout="imgNormal('img_partner'); return true" 
      onmouseover="imgOver('img_partner'); return true"><IMG alt=Partner 
      border=0 height=25 name=img_partner src="mySVM.files/partner.gif" 
      width=73></A> &nbsp; <A 
      href="http://www-ai.cs.uni-dortmund.de/LEHRE/lehre.html" 
      onmousedown="imgClick('img_lehre'); return true" 
      onmouseout="imgNormal('img_lehre'); return true" 
      onmouseover="imgOver('img_lehre'); return true"><IMG alt=Teaching border=0 
      height=25 name=img_lehre src="mySVM.files/lehre.eng.gif" width=79></A> 
      &nbsp; <A 
      href="http://www-ai.cs.uni-dortmund.de/PERSONAL/personal.eng.html" 
      onmousedown="imgClick('img_personal'); return true" 
      onmouseout="imgNormal('img_personal'); return true" 
      onmouseover="imgOver('img_personal'); return true"><IMG alt=Staff border=0 
      height=25 name=img_personal src="mySVM.files/personal.eng.gif" 
      width=54></A><A 
      href="http://www-ai.cs.uni-dortmund.de/UNIVERSELL/index.eng.html" 
      onmousedown="imgClick('img_allgemein'); return true" 
      onmouseout="imgNormal('img_allgemein'); return true" 
      onmouseover="imgOver('img_allgemein'); return true"><IMG alt=General 
      border=0 height=25 name=img_allgemein src="mySVM.files/allgemein.eng.gif" 
      width=74></A><A href="http://www-ai.cs.uni-dortmund.de/INTERN/intern.html" 
      onmousedown="imgClick('img_intern'); return true" 
      onmouseout="imgNormal('img_intern'); return true" 
      onmouseover="imgOver('img_intern'); return true"><IMG alt=Internal 
      border=0 height=25 name=img_intern src="mySVM.files/intern.eng.gif" 
      width=85></A></TD>
    <TD align=right bgColor=#99cdff height=25 noWrap vAlign=bottom><A 
      href="http://www-ai.cs.uni-dortmund.de/Harvest/brokers/www-ai/query.eng.html" 
      onmousedown="imgClick('img_search'); return true" 
      onmouseout="imgNormal('img_search'); return true" 
      onmouseover="imgOver('img_search'); return true"><IMG alt=Search border=0 
      height=25 name=img_search src="mySVM.files/search.gif" width=30></A><A 
      href="mailto:webadmin@ls8.cs.uni-dortmund.de" 
      onmousedown="imgClick('img_mail'); return true" 
      onmouseout="imgNormal('img_mail'); return true" 
      onmouseover="imgOver('img_mail'); return true"><IMG 
      alt="Send email to webadmin@ls8.cs.uni-dortmund.de" border=0 height=25 
      name=img_mail src="mySVM.files/mail.gif" width=38></A><IMG alt="no german" 
      border=0 height=25 src="mySVM.files/no_deutsch.gif" 
width=32></TD></TR></TBODY></TABLE>
<SCRIPT language=JavaScript src="mySVM.files/buttons.eng.js" 
type=text/javascript></SCRIPT>
<!--- Body table -->
<TABLE width="100%">
  <TBODY>
  <TR>
    <TD colSpan=3><FONT size=1>&nbsp;</FONT></TD></TR>
  <TR>
    <TD>&nbsp;&nbsp;</TD>
    <TD>
      <H1>mySVM</H1><!-- /header -->
      <CENTER>
      <H1>mySVM - a support vector machine</H1>by <A 
      href="http://www-ai.cs.uni-dortmund.de/PERSONAL/rueping.html">Stefan 
      Rüping</A>, <A 
      href="mailto:rueping@ls8.cs.uni-dortmund.de">rueping@ls8.cs.uni-dortmund.de</A> 
      </CENTER>
      <H2>News </H2>
      <UL>
        <LI>Download the latest release of <A 
        href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/mySVM-latest.tar.gz">mySVM</A> 
        (Version 2.1.1, November 7th, 2001) 
        <LI>Download the <A 
        href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/mySVM-latest-bin.zip">binary 
        version for Windows</A> 
        <LI>See a <A 
        href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/changes.eng.html">list 
        of changes</A> </LI></UL>
      <H2>About mySVM </H2>mySVM is an implementation of the Support Vector 
      Machine introduced by V. Vapnik (see <A 
      href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/#Vapnik/98a">[Vapnik/98a]</A>). 
      It is based on the optimization algorithm of <A 
      href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/SVM_LIGHT/svm_light.eng.html">SVM<I><SUP>light</SUP></I></A> 
      as described in <A 
      href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/#Joachims/99a">[Joachims/99a]</A>. 
      mySVM can be used for pattern recognition, regression and distribution 
      estimation. 
      <H2>License </H2>This software is free only for non-commercial use. It 
      must not be modified and distributed without prior permission of the 
      author. The author is not responsible for implications from the use of 
      this software. 
      <P>If you are using mySVM for research purposes, please cite the software 
      manual available from this cite in your publications (Stefan Rüping 
      (2000): <EM>mySVM-Manual</EM>, University of Dortmund, Lehrstuhl 
      Informatik 8, http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/). 
      <H2>Installation </H2>
      <H3>Installation under Unix</H3>
      <UL>
        <LI>Download <A 
        href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/mySVM-latest.tar.gz">mySVM</A>. 

        <LI>Create a new directory, change into it and unpack the files into 
        this directory 
        <LI>On typical UN*X systems simply type <TT>make</TT> to compile mySVM. 
        On other systems you have to call your C++ compiler manually. </LI></UL>If 
      everything went right you should have a new subdirectory named 
      <TT>bin</TT> and to files <TT>mysvm</TT> and <TT>predict</TT> in a 
      subdirectory thereof. On some systems you might get an error message about 
      <TT>sys/times.h</TT>. If you do, open the file <TT>globals.h</TT> and 
      uncomment the line <TT>#undef use_time</TT>. 
      <H3>Installation under Windows</H3>If you get the <A 
      href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/mySVM-latest.tar.gz">source 
      code</A> version, you have to compile mySVM youself. First edit the file 
      <EM>globals.h</EM> and uncomment the line <TT>#define windows 1</TT>. 
      Compile the file <EM>learn.cpp</EM> to get the learning program and 
      <EM>predict.cpp</EM> for the model application program. mySVM was tested 
      under Visual C++ 6.0. You can also get the <A 
      href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/mySVM-latest-bin.zip">binary 
      version</A>. <A name=usage>
      <H2>Using mySVM </H2></A>For a complete reference of mySVM have a look 
      into the mySVM manual (<A 
      href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/mysvm-manual.ps">Postscript</A>, 
      <A 
      href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/mysvm-manual.pdf">PDF</A>). 
      Here is a short users guide: 
      <UL>
        <LI><TT>mysvm</TT> is used for training a SVM on a given example set and 
        testing the results 
        <LI><TT>predict</TT> is used for predicting the functional value of new 
        examples based on an already trained SVM. </LI></UL>The input of mySVM 
      consists of 
      <UL>
        <LI>a <A 
        href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/#paramdef">parameter 
        definition</A> 
        <LI>a <A 
        href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/#kerneldef">kernel 
        definition</A> 
        <LI>one or more <A 
        href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/#exampledef">example 
        sets</A> </LI></UL>Input lines starting with "#" are treated as 
      commentary. The input can be given in one or more files. If no filenames 
      or the filename "-" are given, the input is read from stdin. 
      <TT>mysvm</TT> trains a SVM on the first given example set. The following 
      example sets are used for testing (if their classification is given) or 
      the functional value of the examples is being computed (if no 
      classification is given). <A name=paramdef>
      <H3>Parameter definition</H3></A>The parameter definition lets the user 
      choose the type of loss function, the optimizer parameters and the 
      training algorithm to use. The parameter definition starts with the line 
      <TT>@parameters</TT>. 
      <H4>Global parameters:</H4>
      <TABLE border=1>
        <TBODY>
        <TR>
          <TD>pattern</TD>
          <TD>use SVM for pattern recognition</TD></TR>
        <TR>
          <TD>regression</TD>
          <TD>use regression SVM <EM>(default)</EM></TD></TR>
        <TR>
          <TD>nu <EM>float</EM></TD>
          <TD>use nu-SVM with the given value of nu instead of normal SVM (see 
            <A 
            href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/#Schoelkopf/etal/2000a">[Schoelkopf/etal/2000a]</A> 
            for details on nu-SVMs). 
        <TR>
          <TD>distribution</TD>
          <TD>estimate the support of the distribution of the training 
            examples (see <A 
            href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/#schoelkopf/etal/99a">[Schoelkopf/etal/99a]</A>). 
            Nu must be set! 
        <TR>
          <TD>verbosity [1..5]</TD>
          <TD>ranges from 1 (no messages) over 3 (default) to 5 (flood, for 
            debugging only) </TD></TR>
        <TR>
          <TD>scale</TD>
          <TD>scale the training examples to mean 0 and variance 1 
        (default)</TD></TR>
        <TR>
          <TD>no_scale</TD>
          <TD>do not scale the training examples (may be numerically less 
            stable!)</TD></TR>
        <TR>
          <TD>format</TD>
          <TD>set the default example file format. See the description <A 
            href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/#exampledef">here</A>.</TD></TR>
        <TR>
          <TD>delimiter</TD>
          <TD>set the default example file format. See the description <A 
            href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/#exampledef">here</A>.</TD></TR></TBODY></TABLE>
      <H4>Loss function:</H4>
      <TABLE border=1>
        <TBODY>
        <TR>
          <TD>C <EM>float</EM></TD>
          <TD>the SVM complexity constant (Note: C will be scaled by 1 / 
            number of training examples).</TD></TR>
        <TR>
          <TD>L+ <EM>float</EM></TD>
          <TD>penalize positive deviation (prediction too high) by this 
          factor</TD></TR>
        <TR>
          <TD>L- <EM>float</EM></TD>
          <TD>penalize negative deviation (prediction too low) by this 
          factor</TD></TR>
        <TR>
          <TD>epsilon <EM>float</EM></TD>
          <TD>insensitivity constant. No loss if prediction lies this close to 
            true value</TD></TR>
        <TR>
          <TD>epsilon+ <EM>float</EM></TD>
          <TD>epsilon for positive deviation only</TD></TR>
        <TR>
          <TD>epsilon- <EM>float</EM></TD>
          <TD>epsilon for negative deviation only</TD></TR>
        <TR>
          <TD>quadraticLoss+</TD>
          <TD>use quadratic loss for positive deviation</TD></TR>
        <TR>
          <TD>quadraticLoss-</TD>
          <TD>use quadratic loss for negative deviation</TD></TR>
        <TR>
          <TD>quadraticLoss</TD>
          <TD>use quadratic loss for both positive and negative 

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -