⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 md5.c

📁 wince下著名的视频播放器源码
💻 C
字号:
/* * This code implements the MD5 message-digest algorithm. * The algorithm is due to Ron Rivest.  This code was * written by Colin Plumb in 1993, no copyright is claimed. * This code is in the public domain; do with it what you wish. * * Equivalent code is available from RSA Data Security, Inc. * This code has been tested against that, and is equivalent, * except that you don't need to include two pages of legalese * with every copy. * * To compute the message digest of a chunk of bytes, declare an * MD5Context structure, pass it to MD5Init, call MD5Update as * needed on buffers full of bytes, and then call MD5Final, which * will fill a supplied 16-byte array with the digest. * * Changed so as no longer to depend on Colin Plumb's `usual.h' header * definitions; now uses stuff from dpkg's config.h. *  - Ian Jackson <ijackson@nyx.cs.du.edu>. * Still in the public domain. * * Josh Coalson: made some changes to integrate with libFLAC. * Still in the public domain. */#include <stdlib.h>		/* for malloc() */#include <string.h>		/* for memcpy() */#include "private/md5.h"#ifdef HAVE_CONFIG_H#include <config.h>#endif#ifndef FLaC__INLINE#define FLaC__INLINE#endifstatic FLAC__bool is_big_endian_host_;#ifndef ASM_MD5/* The four core functions - F1 is optimized somewhat *//* #define F1(x, y, z) (x & y | ~x & z) */#define F1(x, y, z) (z ^ (x & (y ^ z)))#define F2(x, y, z) F1(z, x, y)#define F3(x, y, z) (x ^ y ^ z)#define F4(x, y, z) (y ^ (x | ~z))/* This is the central step in the MD5 algorithm. */#define MD5STEP(f,w,x,y,z,in,s) \	 (w += f(x,y,z) + in, w = (w<<s | w>>(32-s)) + x)/* * The core of the MD5 algorithm, this alters an existing MD5 hash to * reflect the addition of 16 longwords of new data.  MD5Update blocks * the data and converts bytes into longwords for this routine. */FLaC__INLINEvoidFLAC__MD5Transform(FLAC__uint32 buf[4], FLAC__uint32 const in[16]){	register FLAC__uint32 a, b, c, d;	a = buf[0];	b = buf[1];	c = buf[2];	d = buf[3];	MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);	MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);	MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);	MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);	MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);	MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);	MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);	MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);	MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);	MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);	MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);	MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);	MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);	MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);	MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);	MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);	MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);	MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);	MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);	MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);	MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);	MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);	MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);	MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);	MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);	MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);	MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);	MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);	MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);	MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);	MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);	MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);	MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);	MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);	MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);	MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);	MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);	MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);	MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);	MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);	MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);	MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);	MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);	MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);	MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);	MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);	MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);	MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);	MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);	MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);	MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);	MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);	MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);	MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);	MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);	MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);	MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);	MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);	MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);	MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);	MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);	MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);	MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);	MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);	buf[0] += a;	buf[1] += b;	buf[2] += c;	buf[3] += d;}#endifFLaC__INLINEvoidbyteSwap(FLAC__uint32 *buf, unsigned words){	md5byte *p = (md5byte *)buf;	if(!is_big_endian_host_)		return;	do {		*buf++ = (FLAC__uint32)((unsigned)p[3] << 8 | p[2]) << 16 | ((unsigned)p[1] << 8 | p[0]);		p += 4;	} while (--words);}/* * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious * initialization constants. */voidFLAC__MD5Init(struct FLAC__MD5Context *ctx){	FLAC__uint32 test = 1;	is_big_endian_host_ = (*((FLAC__byte*)(&test)))? false : true;	ctx->buf[0] = 0x67452301;	ctx->buf[1] = 0xefcdab89;	ctx->buf[2] = 0x98badcfe;	ctx->buf[3] = 0x10325476;	ctx->bytes[0] = 0;	ctx->bytes[1] = 0;	ctx->internal_buf = 0;	ctx->capacity = 0;}/* * Update context to reflect the concatenation of another buffer full * of bytes. */voidFLAC__MD5Update(struct FLAC__MD5Context *ctx, md5byte const *buf, unsigned len){	FLAC__uint32 t;	/* Update byte count */	t = ctx->bytes[0];	if ((ctx->bytes[0] = t + len) < t)		ctx->bytes[1]++;	/* Carry from low to high */	t = 64 - (t & 0x3f);	/* Space available in ctx->in (at least 1) */	if (t > len) {		memcpy((md5byte *)ctx->in + 64 - t, buf, len);		return;	}	/* First chunk is an odd size */	memcpy((md5byte *)ctx->in + 64 - t, buf, t);	byteSwap(ctx->in, 16);	FLAC__MD5Transform(ctx->buf, ctx->in);	buf += t;	len -= t;	/* Process data in 64-byte chunks */	while (len >= 64) {		memcpy(ctx->in, buf, 64);		byteSwap(ctx->in, 16);		FLAC__MD5Transform(ctx->buf, ctx->in);		buf += 64;		len -= 64;	}	/* Handle any remaining bytes of data. */	memcpy(ctx->in, buf, len);}/* * Convert the incoming audio signal to a byte stream and FLAC__MD5Update it. */FLAC__boolFLAC__MD5Accumulate(struct FLAC__MD5Context *ctx, const FLAC__int32 * const signal[], unsigned channels, unsigned samples, unsigned bytes_per_sample){	unsigned channel, sample, a_byte;	FLAC__int32 a_word;	FLAC__byte *buf_;	const unsigned bytes_needed = channels * samples * bytes_per_sample;	if(ctx->capacity < bytes_needed) {		FLAC__byte *tmp = (FLAC__byte*)realloc(ctx->internal_buf, bytes_needed);		if(0 == tmp) {			free(ctx->internal_buf);			if(0 == (ctx->internal_buf = (FLAC__byte*)malloc(bytes_needed)))				return false;		}		ctx->internal_buf = tmp;		ctx->capacity = bytes_needed;	}	buf_ = ctx->internal_buf;#ifdef FLAC__CPU_IA32	if(channels == 2 && bytes_per_sample == 2) {		memcpy(buf_, signal[0], sizeof(FLAC__int32) * samples);		buf_ += sizeof(FLAC__int16);		for(sample = 0; sample < samples; sample++)			((FLAC__int16 *)buf_)[2 * sample] = (FLAC__int16)signal[1][sample];	}	else if(channels == 1 && bytes_per_sample == 2) {		for(sample = 0; sample < samples; sample++)			((FLAC__int16 *)buf_)[sample] = (FLAC__int16)signal[0][sample];	}	else#endif	for(sample = 0; sample < samples; sample++) {		for(channel = 0; channel < channels; channel++) {			a_word = signal[channel][sample];			for(a_byte = 0; a_byte < bytes_per_sample; a_byte++) {				*buf_++ = (FLAC__byte)(a_word & 0xff);				a_word >>= 8;			}		}	}	FLAC__MD5Update(ctx, ctx->internal_buf, bytes_needed);	return true;}/* * Final wrapup - pad to 64-byte boundary with the bit pattern * 1 0* (64-bit count of bits processed, MSB-first) */voidFLAC__MD5Final(md5byte digest[16], struct FLAC__MD5Context *ctx){	int count = ctx->bytes[0] & 0x3f;	/* Number of bytes in ctx->in */	md5byte *p = (md5byte *)ctx->in + count;	/* Set the first char of padding to 0x80.  There is always room. */	*p++ = 0x80;	/* Bytes of padding needed to make 56 bytes (-8..55) */	count = 56 - 1 - count;	if (count < 0) {	/* Padding forces an extra block */		memset(p, 0, count + 8);		byteSwap(ctx->in, 16);		FLAC__MD5Transform(ctx->buf, ctx->in);		p = (md5byte *)ctx->in;		count = 56;	}	memset(p, 0, count);	byteSwap(ctx->in, 14);	/* Append length in bits and transform */	ctx->in[14] = ctx->bytes[0] << 3;	ctx->in[15] = ctx->bytes[1] << 3 | ctx->bytes[0] >> 29;	FLAC__MD5Transform(ctx->buf, ctx->in);	byteSwap(ctx->buf, 4);	memcpy(digest, ctx->buf, 16);	memset(ctx, 0, sizeof(ctx));	/* In case it's sensitive */	if(0 != ctx->internal_buf) {		free(ctx->internal_buf);		ctx->internal_buf = 0;		ctx->capacity = 0;	}}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -