📄 serialized-form.html
字号:
<H3>m_numToSelect</H3><PRE>int <B>m_numToSelect</B></PRE><DL><DD>The number of attributes to retain if a ranking is requested. -1indicates that all attributes are to be retained. Has precedence overm_threshold</DL><HR><H3>m_calculatedNumToSelect</H3><PRE>int <B>m_calculatedNumToSelect</B></PRE><DL></DL><HR><H3>m_threshold</H3><PRE>double <B>m_threshold</B></PRE><DL><DD>the threshold for removing attributes if ranking is requested</DL><P><A NAME="weka.attributeSelection.RandomSearch"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#CCCCFF" CLASS="TableSubHeadingColor"><TD COLSPAN=2><FONT SIZE="+2"><B>Class <A HREF="weka/attributeSelection/RandomSearch.html">weka.attributeSelection.RandomSearch</A> implements Serializable</B></FONT></TD></TR></TABLE><P><A NAME="serializedForm"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TD COLSPAN=1><FONT SIZE="+2"><B>Serialized Fields</B></FONT></TD></TR></TABLE><H3>m_starting</H3><PRE>int[] <B>m_starting</B></PRE><DL><DD>holds a starting set as an array of attributes.</DL><HR><H3>m_startRange</H3><PRE><A HREF="weka/core/Range.html">Range</A> <B>m_startRange</B></PRE><DL><DD>holds the start set as a range</DL><HR><H3>m_bestGroup</H3><PRE>java.util.BitSet <B>m_bestGroup</B></PRE><DL><DD>the best feature set found during the search</DL><HR><H3>m_bestMerit</H3><PRE>double <B>m_bestMerit</B></PRE><DL><DD>the merit of the best subset found</DL><HR><H3>m_onlyConsiderBetterAndSmaller</H3><PRE>boolean <B>m_onlyConsiderBetterAndSmaller</B></PRE><DL><DD>only accept a feature set as being "better" than the best if its merit is better or equal to the best, and it contains fewer features than the best (this allows LVF to be implimented).</DL><HR><H3>m_hasClass</H3><PRE>boolean <B>m_hasClass</B></PRE><DL><DD>does the data have a class</DL><HR><H3>m_classIndex</H3><PRE>int <B>m_classIndex</B></PRE><DL><DD>holds the class index</DL><HR><H3>m_numAttribs</H3><PRE>int <B>m_numAttribs</B></PRE><DL><DD>number of attributes in the data</DL><HR><H3>m_seed</H3><PRE>int <B>m_seed</B></PRE><DL><DD>seed for random number generation</DL><HR><H3>m_searchSize</H3><PRE>double <B>m_searchSize</B></PRE><DL><DD>percentage of the search space to consider</DL><HR><H3>m_iterations</H3><PRE>int <B>m_iterations</B></PRE><DL><DD>the number of iterations performed</DL><HR><H3>m_random</H3><PRE>java.util.Random <B>m_random</B></PRE><DL><DD>random number object</DL><HR><H3>m_verbose</H3><PRE>boolean <B>m_verbose</B></PRE><DL><DD>output new best subsets as the search progresses</DL><P><A NAME="weka.attributeSelection.Ranker"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#CCCCFF" CLASS="TableSubHeadingColor"><TD COLSPAN=2><FONT SIZE="+2"><B>Class <A HREF="weka/attributeSelection/Ranker.html">weka.attributeSelection.Ranker</A> implements Serializable</B></FONT></TD></TR></TABLE><P><A NAME="serializedForm"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TD COLSPAN=1><FONT SIZE="+2"><B>Serialized Fields</B></FONT></TD></TR></TABLE><H3>m_starting</H3><PRE>int[] <B>m_starting</B></PRE><DL><DD>Holds the starting set as an array of attributes</DL><HR><H3>m_startRange</H3><PRE><A HREF="weka/core/Range.html">Range</A> <B>m_startRange</B></PRE><DL><DD>Holds the start set for the search as a range</DL><HR><H3>m_attributeList</H3><PRE>int[] <B>m_attributeList</B></PRE><DL><DD>Holds the ordered list of attributes</DL><HR><H3>m_attributeMerit</H3><PRE>double[] <B>m_attributeMerit</B></PRE><DL><DD>Holds the list of attribute merit scores</DL><HR><H3>m_hasClass</H3><PRE>boolean <B>m_hasClass</B></PRE><DL><DD>Data has class attribute---if unsupervised evaluator then no class</DL><HR><H3>m_classIndex</H3><PRE>int <B>m_classIndex</B></PRE><DL><DD>Class index of the data if supervised evaluator</DL><HR><H3>m_numAttribs</H3><PRE>int <B>m_numAttribs</B></PRE><DL><DD>The number of attribtes</DL><HR><H3>m_threshold</H3><PRE>double <B>m_threshold</B></PRE><DL><DD>A threshold by which to discard attributes---used by the AttributeSelection module</DL><HR><H3>m_numToSelect</H3><PRE>int <B>m_numToSelect</B></PRE><DL><DD>The number of attributes to select. -1 indicates that all attributesare to be retained. Has precedence over m_threshold</DL><HR><H3>m_calculatedNumToSelect</H3><PRE>int <B>m_calculatedNumToSelect</B></PRE><DL><DD>Used to compute the number to select</DL><P><A NAME="weka.attributeSelection.RankSearch"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#CCCCFF" CLASS="TableSubHeadingColor"><TD COLSPAN=2><FONT SIZE="+2"><B>Class <A HREF="weka/attributeSelection/RankSearch.html">weka.attributeSelection.RankSearch</A> implements Serializable</B></FONT></TD></TR></TABLE><P><A NAME="serializedForm"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TD COLSPAN=1><FONT SIZE="+2"><B>Serialized Fields</B></FONT></TD></TR></TABLE><H3>m_hasClass</H3><PRE>boolean <B>m_hasClass</B></PRE><DL><DD>does the data have a class</DL><HR><H3>m_classIndex</H3><PRE>int <B>m_classIndex</B></PRE><DL><DD>holds the class index</DL><HR><H3>m_numAttribs</H3><PRE>int <B>m_numAttribs</B></PRE><DL><DD>number of attributes in the data</DL><HR><H3>m_best_group</H3><PRE>java.util.BitSet <B>m_best_group</B></PRE><DL><DD>the best subset found</DL><HR><H3>m_ASEval</H3><PRE><A HREF="weka/attributeSelection/ASEvaluation.html">ASEvaluation</A> <B>m_ASEval</B></PRE><DL><DD>the attribute evaluator to use for generating the ranking</DL><HR><H3>m_SubsetEval</H3><PRE><A HREF="weka/attributeSelection/ASEvaluation.html">ASEvaluation</A> <B>m_SubsetEval</B></PRE><DL><DD>the subset evaluator with which to evaluate the ranking</DL><HR><H3>m_Instances</H3><PRE><A HREF="weka/core/Instances.html">Instances</A> <B>m_Instances</B></PRE><DL><DD>the training instances</DL><HR><H3>m_bestMerit</H3><PRE>double <B>m_bestMerit</B></PRE><DL><DD>the merit of the best subset found</DL><HR><H3>m_Ranking</H3><PRE>int[] <B>m_Ranking</B></PRE><DL><DD>will hold the attribute ranking</DL><P><A NAME="weka.attributeSelection.ReliefFAttributeEval"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#CCCCFF" CLASS="TableSubHeadingColor"><TD COLSPAN=2><FONT SIZE="+2"><B>Class <A HREF="weka/attributeSelection/ReliefFAttributeEval.html">weka.attributeSelection.ReliefFAttributeEval</A> implements Serializable</B></FONT></TD></TR></TABLE><P><A NAME="serializedForm"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TD COLSPAN=1><FONT SIZE="+2"><B>Serialized Fields</B></FONT></TD></TR></TABLE><H3>m_trainInstances</H3><PRE><A HREF="weka/core/Instances.html">Instances</A> <B>m_trainInstances</B></PRE><DL><DD>The training instances</DL><HR><H3>m_classIndex</H3><PRE>int <B>m_classIndex</B></PRE><DL><DD>The class index</DL><HR><H3>m_numAttribs</H3><PRE>int <B>m_numAttribs</B></PRE><DL><DD>The number of attributes</DL><HR><H3>m_numInstances</H3><PRE>int <B>m_numInstances</B></PRE><DL><DD>The number of instances</DL><HR><H3>m_numericClass</H3><PRE>boolean <B>m_numericClass</B></PRE><DL><DD>Numeric class</DL><HR><H3>m_numClasses</H3><PRE>int <B>m_numClasses</B></PRE><DL><DD>The number of classes if class is nominal</DL><HR><H3>m_ndc</H3><PRE>double <B>m_ndc</B></PRE><DL><DD>Used to hold the probability of a different class val given nearest instances (numeric class)</DL><HR><H3>m_nda</H3><PRE>double[] <B>m_nda</B></PRE><DL><DD>Used to hold the prob of different value of an attribute given nearest instances (numeric class case)</DL><HR><H3>m_ndcda</H3><PRE>double[] <B>m_ndcda</B></PRE><DL><DD>Used to hold the prob of a different class val and different att val given nearest instances (numeric class case)</DL><HR><H3>m_weights</H3><PRE>double[] <B>m_weights</B></PRE><DL><DD>Holds the weights that relief assigns to attributes</DL><HR><H3>m_classProbs</H3><PRE>double[] <B>m_classProbs</B></PRE><DL><DD>Prior class probabilities (discrete class case)</DL><HR><H3>m_sampleM</H3><PRE>int <B>m_sampleM</B></PRE><DL><DD>The number of instances to sample when estimating attributes default == -1, use all instances</DL><HR><H3>m_Knn</H3><PRE>int <B>m_Knn</B></PRE><DL><DD>The number of nearest hits/misses</DL><HR><H3>m_karray</H3><PRE>double[][][] <B>m_karray</B></PRE><DL><DD>k nearest scores + instance indexes for n classes</DL><HR><H3>m_maxArray</H3><PRE>double[] <B>m_maxArray</B></PRE><DL><DD>Upper bound for numeric attributes</DL><HR><H3>m_minArray</H3><PRE>double[] <B>m_minArray</B></PRE><DL><DD>Lower bound for numeric attributes</DL><HR><H3>m_worst</H3><PRE>double[] <B>m_worst</B></PRE><DL><DD>Keep track of the farthest instance for each class</DL><HR><H3>m_index</H3><PRE>int[] <B>m_index</B></PRE><DL><DD>Index in the m_karray of the farthest instance for each class</DL><HR><H3>m_stored</H3><PRE>int[] <B>m_stored</B></PRE><DL><DD>Number of nearest neighbours stored of each class</DL><HR><H3>m_seed</H3><PRE>int <B>m_seed</B></PRE><DL><DD>Random number seed used for sampling instances</DL><HR><H3>m_weightsByRank</H3><PRE>double[] <B>m_weightsByRank</B></PRE><DL><DD>used to (optionally) weight nearest neighbours by their distance from the instance in question. Each entry holds exp(-((rank(r_i, i_j)/sigma)^2)) where rank(r_i,i_j) is the rank of instance i_j in a sequence of instances ordered by the distance from r_i. sigma is a user defined parameter, default=20</DL><HR><H3>m_sigma</H3><PRE>int <B>m_sigma</B></PRE><DL></DL><HR><H3>m_weightByDistance</H3><PRE>boolean <B>m_weightByDistance</B></PRE><DL><DD>Weight by distance rather than equal weights</DL><P><A NAME="weka.attributeSelection.SubsetEvaluator"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#CCCCFF" CLASS="TableSubHeadingColor"><TD COLSPAN=2><FONT SIZE="+2"><B>Class <A HREF="weka/attributeSelection/SubsetEvaluator.html">weka.attributeSelection.SubsetEvaluator</A> implements Serializable</B></FONT></TD></TR></TABLE><P><P><A NAME="weka.attributeSelection.SymmetricalUncertAttributeEval"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#CCCCFF" CLASS="TableSubHeadingColor"><TD COLSPAN=2><FONT SIZE="+2"><B>Class <A HREF="weka/attributeSelection/SymmetricalUncertAttributeEval.html">weka.attributeSelection.SymmetricalUncertAttributeEval</A> implements Serializable</B></FONT></TD></TR></TABLE><P><A NAME="serializedForm"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TD COLSPAN=1><FONT SIZE="+2"><B>Serialized Fields</B></FONT></TD></TR></TABLE><H3>m_trainInstances</H3><PRE><A HREF="weka/core/Instances.html">Instances</A> <B>m_trainInstances</B></PRE><DL><DD>The training instances</DL><HR><H3>m_classIndex</H3><PRE>int <B>m_classIndex</B></PRE><DL><DD>The class index</DL><HR><H3>m_numAttribs</H3><PRE>int <B>m_numAttribs</B></PRE><DL><DD>The number of attributes</DL><HR><H3>m_numInstances</H3><PRE>int <B>m_numInstances</B></PRE><DL><DD>The number of instances</DL><HR><H3>m_numClasses</H3><PRE>int <B>m_numClasses</B></PRE><DL><DD>The number of classes</DL><HR><H3>m_missing_merge</H3><PRE>boolean <B>m_missing_merge</B></PRE><DL><DD>Treat missing values as a seperate value</DL><P><A NAME="weka.attributeSelection.UnsupervisedAttributeEvaluator"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%">
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -