⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 serialized-form.html

📁 这是一个由java实现的数据挖掘
💻 HTML
📖 第 1 页 / 共 5 页
字号:
<DL><DD>The class index</DL><HR><H3>m_isNumeric</H3><PRE>boolean <B>m_isNumeric</B></PRE><DL><DD>Is the class numeric</DL><HR><H3>m_numAttribs</H3><PRE>int <B>m_numAttribs</B></PRE><DL><DD>Number of attributes in the training data</DL><HR><H3>m_numInstances</H3><PRE>int <B>m_numInstances</B></PRE><DL><DD>Number of instances in the training data</DL><HR><H3>m_missingSeperate</H3><PRE>boolean <B>m_missingSeperate</B></PRE><DL><DD>Treat missing values as seperate values</DL><HR><H3>m_locallyPredictive</H3><PRE>boolean <B>m_locallyPredictive</B></PRE><DL><DD>Include locally predicitive attributes</DL><HR><H3>m_corr_matrix</H3><PRE><A HREF="weka/core/Matrix.html">Matrix</A> <B>m_corr_matrix</B></PRE><DL><DD>Holds the matrix of attribute correlations</DL><HR><H3>m_std_devs</H3><PRE>double[] <B>m_std_devs</B></PRE><DL><DD>Standard deviations of attributes (when using pearsons correlation)</DL><HR><H3>m_c_Threshold</H3><PRE>double <B>m_c_Threshold</B></PRE><DL><DD>Threshold for admitting locally predictive features</DL><P><A NAME="weka.attributeSelection.ChiSquaredAttributeEval"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#CCCCFF" CLASS="TableSubHeadingColor"><TD COLSPAN=2><FONT SIZE="+2"><B>Class <A HREF="weka/attributeSelection/ChiSquaredAttributeEval.html">weka.attributeSelection.ChiSquaredAttributeEval</A> implements Serializable</B></FONT></TD></TR></TABLE><P><A NAME="serializedForm"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TD COLSPAN=1><FONT SIZE="+2"><B>Serialized Fields</B></FONT></TD></TR></TABLE><H3>m_missing_merge</H3><PRE>boolean <B>m_missing_merge</B></PRE><DL><DD>Treat missing values as a seperate value</DL><HR><H3>m_Binarize</H3><PRE>boolean <B>m_Binarize</B></PRE><DL><DD>Just binarize numeric attributes</DL><HR><H3>m_ChiSquareds</H3><PRE>double[] <B>m_ChiSquareds</B></PRE><DL><DD>The chi-squared value for each attribute</DL><P><A NAME="weka.attributeSelection.ClassifierSubsetEval"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#CCCCFF" CLASS="TableSubHeadingColor"><TD COLSPAN=2><FONT SIZE="+2"><B>Class <A HREF="weka/attributeSelection/ClassifierSubsetEval.html">weka.attributeSelection.ClassifierSubsetEval</A> implements Serializable</B></FONT></TD></TR></TABLE><P><A NAME="serializedForm"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TD COLSPAN=1><FONT SIZE="+2"><B>Serialized Fields</B></FONT></TD></TR></TABLE><H3>m_trainingInstances</H3><PRE><A HREF="weka/core/Instances.html">Instances</A> <B>m_trainingInstances</B></PRE><DL><DD>training instances</DL><HR><H3>m_classIndex</H3><PRE>int <B>m_classIndex</B></PRE><DL><DD>class index</DL><HR><H3>m_numAttribs</H3><PRE>int <B>m_numAttribs</B></PRE><DL><DD>number of attributes in the training data</DL><HR><H3>m_numInstances</H3><PRE>int <B>m_numInstances</B></PRE><DL><DD>number of training instances</DL><HR><H3>m_Classifier</H3><PRE><A HREF="weka/classifiers/Classifier.html">Classifier</A> <B>m_Classifier</B></PRE><DL><DD>holds the classifier to use for error estimates</DL><HR><H3>m_Evaluation</H3><PRE><A HREF="weka/classifiers/Evaluation.html">Evaluation</A> <B>m_Evaluation</B></PRE><DL><DD>holds the evaluation object to use for evaluating the classifier</DL><HR><H3>m_holdOutFile</H3><PRE>java.io.File <B>m_holdOutFile</B></PRE><DL><DD>the file that containts hold out/test instances</DL><HR><H3>m_holdOutInstances</H3><PRE><A HREF="weka/core/Instances.html">Instances</A> <B>m_holdOutInstances</B></PRE><DL><DD>the instances to test on</DL><HR><H3>m_useTraining</H3><PRE>boolean <B>m_useTraining</B></PRE><DL><DD>evaluate on training data rather than seperate hold out/test set</DL><P><A NAME="weka.attributeSelection.ConsistencySubsetEval"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#CCCCFF" CLASS="TableSubHeadingColor"><TD COLSPAN=2><FONT SIZE="+2"><B>Class <A HREF="weka/attributeSelection/ConsistencySubsetEval.html">weka.attributeSelection.ConsistencySubsetEval</A> implements Serializable</B></FONT></TD></TR></TABLE><P><A NAME="serializedForm"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TD COLSPAN=1><FONT SIZE="+2"><B>Serialized Fields</B></FONT></TD></TR></TABLE><H3>m_trainInstances</H3><PRE><A HREF="weka/core/Instances.html">Instances</A> <B>m_trainInstances</B></PRE><DL><DD>training instances</DL><HR><H3>m_classIndex</H3><PRE>int <B>m_classIndex</B></PRE><DL><DD>class index</DL><HR><H3>m_numAttribs</H3><PRE>int <B>m_numAttribs</B></PRE><DL><DD>number of attributes in the training data</DL><HR><H3>m_numInstances</H3><PRE>int <B>m_numInstances</B></PRE><DL><DD>number of instances in the training data</DL><HR><H3>m_disTransform</H3><PRE><A HREF="weka/filters/DiscretizeFilter.html">DiscretizeFilter</A> <B>m_disTransform</B></PRE><DL><DD>Discretise numeric attributes</DL><HR><H3>m_table</H3><PRE>java.util.Hashtable <B>m_table</B></PRE><DL><DD>Hash table for evaluating feature subsets</DL><P><A NAME="weka.attributeSelection.ExhaustiveSearch"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#CCCCFF" CLASS="TableSubHeadingColor"><TD COLSPAN=2><FONT SIZE="+2"><B>Class <A HREF="weka/attributeSelection/ExhaustiveSearch.html">weka.attributeSelection.ExhaustiveSearch</A> implements Serializable</B></FONT></TD></TR></TABLE><P><A NAME="serializedForm"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TD COLSPAN=1><FONT SIZE="+2"><B>Serialized Fields</B></FONT></TD></TR></TABLE><H3>m_starting</H3><PRE>int[] <B>m_starting</B></PRE><DL><DD>holds a starting set as an array of attributes.</DL><HR><H3>m_startRange</H3><PRE><A HREF="weka/core/Range.html">Range</A> <B>m_startRange</B></PRE><DL><DD>the start set as a Range</DL><HR><H3>m_bestGroup</H3><PRE>java.util.BitSet <B>m_bestGroup</B></PRE><DL><DD>the best feature set found during the search</DL><HR><H3>m_bestMerit</H3><PRE>double <B>m_bestMerit</B></PRE><DL><DD>the merit of the best subset found</DL><HR><H3>m_hasClass</H3><PRE>boolean <B>m_hasClass</B></PRE><DL><DD>does the data have a class</DL><HR><H3>m_classIndex</H3><PRE>int <B>m_classIndex</B></PRE><DL><DD>holds the class index</DL><HR><H3>m_numAttribs</H3><PRE>int <B>m_numAttribs</B></PRE><DL><DD>number of attributes in the data</DL><HR><H3>m_verbose</H3><PRE>boolean <B>m_verbose</B></PRE><DL><DD>if true, then ouput new best subsets as the search progresses</DL><HR><H3>m_stopAfterFirst</H3><PRE>boolean <B>m_stopAfterFirst</B></PRE><DL><DD>stop after finding the first subset equal to or better than the supplied start set (set to true if start set is supplied).</DL><HR><H3>m_evaluations</H3><PRE>int <B>m_evaluations</B></PRE><DL><DD>the number of subsets evaluated during the search</DL><P><A NAME="weka.attributeSelection.ForwardSelection"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#CCCCFF" CLASS="TableSubHeadingColor"><TD COLSPAN=2><FONT SIZE="+2"><B>Class <A HREF="weka/attributeSelection/ForwardSelection.html">weka.attributeSelection.ForwardSelection</A> implements Serializable</B></FONT></TD></TR></TABLE><P><A NAME="serializedForm"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TD COLSPAN=1><FONT SIZE="+2"><B>Serialized Fields</B></FONT></TD></TR></TABLE><H3>m_hasClass</H3><PRE>boolean <B>m_hasClass</B></PRE><DL><DD>does the data have a class</DL><HR><H3>m_classIndex</H3><PRE>int <B>m_classIndex</B></PRE><DL><DD>holds the class index</DL><HR><H3>m_numAttribs</H3><PRE>int <B>m_numAttribs</B></PRE><DL><DD>number of attributes in the data</DL><HR><H3>m_rankingRequested</H3><PRE>boolean <B>m_rankingRequested</B></PRE><DL><DD>true if the user has requested a ranked list of attributes</DL><HR><H3>m_doRank</H3><PRE>boolean <B>m_doRank</B></PRE><DL><DD>go from one side of the search space to the other in order to generate a ranking</DL><HR><H3>m_doneRanking</H3><PRE>boolean <B>m_doneRanking</B></PRE><DL><DD>used to indicate whether or not ranking has been performed</DL><HR><H3>m_threshold</H3><PRE>double <B>m_threshold</B></PRE><DL><DD>A threshold by which to discard attributes---used by the AttributeSelection module</DL><HR><H3>m_numToSelect</H3><PRE>int <B>m_numToSelect</B></PRE><DL><DD>The number of attributes to select. -1 indicates that all attributesare to be retained. Has precedence over m_threshold</DL><HR><H3>m_calculatedNumToSelect</H3><PRE>int <B>m_calculatedNumToSelect</B></PRE><DL></DL><HR><H3>m_bestMerit</H3><PRE>double <B>m_bestMerit</B></PRE><DL><DD>the merit of the best subset found</DL><HR><H3>m_rankedAtts</H3><PRE>double[][] <B>m_rankedAtts</B></PRE><DL><DD>a ranked list of attribute indexes</DL><HR><H3>m_rankedSoFar</H3><PRE>int <B>m_rankedSoFar</B></PRE><DL></DL><HR><H3>m_best_group</H3><PRE>java.util.BitSet <B>m_best_group</B></PRE><DL><DD>the best subset found</DL><HR><H3>m_ASEval</H3><PRE><A HREF="weka/attributeSelection/ASEvaluation.html">ASEvaluation</A> <B>m_ASEval</B></PRE><DL></DL><HR><H3>m_Instances</H3><PRE><A HREF="weka/core/Instances.html">Instances</A> <B>m_Instances</B></PRE><DL></DL><HR><H3>m_startRange</H3><PRE><A HREF="weka/core/Range.html">Range</A> <B>m_startRange</B></PRE><DL><DD>holds the start set for the search as a Range</DL><HR><H3>m_starting</H3><PRE>int[] <B>m_starting</B></PRE><DL><DD>holds an array of starting attributes</DL><P><A NAME="weka.attributeSelection.GainRatioAttributeEval"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#CCCCFF" CLASS="TableSubHeadingColor"><TD COLSPAN=2><FONT SIZE="+2"><B>Class <A HREF="weka/attributeSelection/GainRatioAttributeEval.html">weka.attributeSelection.GainRatioAttributeEval</A> implements Serializable</B></FONT></TD></TR></TABLE><P><A NAME="serializedForm"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TD COLSPAN=1><FONT SIZE="+2"><B>Serialized Fields</B></FONT></TD></TR></TABLE><H3>m_trainInstances</H3><PRE><A HREF="weka/core/Instances.html">Instances</A> <B>m_trainInstances</B></PRE><DL><DD>The training instances</DL><HR><H3>m_classIndex</H3><PRE>int <B>m_classIndex</B></PRE><DL><DD>The class index</DL><HR><H3>m_numAttribs</H3><PRE>int <B>m_numAttribs</B></PRE><DL><DD>The number of attributes</DL><HR><H3>m_numInstances</H3><PRE>int <B>m_numInstances</B></PRE><DL><DD>The number of instances</DL><HR><H3>m_numClasses</H3><PRE>int <B>m_numClasses</B></PRE><DL><DD>The number of classes</DL><HR><H3>m_missing_merge</H3><PRE>boolean <B>m_missing_merge</B></PRE><DL><DD>Merge missing values</DL><P><A NAME="weka.attributeSelection.GeneticSearch"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#CCCCFF" CLASS="TableSubHeadingColor"><TD COLSPAN=2><FONT SIZE="+2"><B>Class <A HREF="weka/attributeSelection/GeneticSearch.html">weka.attributeSelection.GeneticSearch</A> implements Serializable</B></FONT></TD></TR></TABLE><P><A NAME="serializedForm"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TD COLSPAN=1><FONT SIZE="+2"><B>Serialized Fields</B></FONT></TD></TR></TABLE><H3>m_starting</H3><PRE>int[] <B>m_starting</B></PRE><DL><DD>holds a starting set as an array of attributes. Becomes one member of the initial random population</DL><HR><H3>m_startRange</H3><PRE><A HREF="weka/core/Range.html">Range</A> <B>m_startRange</B></PRE><DL><DD>holds the start set for the search as a Range</DL><HR><H3>m_hasClass</H3><PRE>boolean <B>m_hasClass</B></PRE><DL><DD>does the data have a class</DL><HR>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -