📄 ratecontrol.c
字号:
case SLICE_TYPE_B:
return rc->entry[frame_num].kept_as_ref ? X264_TYPE_BREF : X264_TYPE_B;
case SLICE_TYPE_P:
default:
return X264_TYPE_P;
}
}
else
{
return X264_TYPE_AUTO;
}
}
/* After encoding one frame, save stats and update ratecontrol state */
void x264_ratecontrol_end( x264_t *h, int bits )
{
x264_ratecontrol_t *rc = h->rc;
const int *mbs = h->stat.frame.i_mb_count;
int i;
/// x264_cpu_restore( h->param.cpu );
h->stat.frame.i_mb_count_skip = mbs[P_SKIP] + mbs[B_SKIP];
h->stat.frame.i_mb_count_i = mbs[I_16x16] + mbs[I_8x8] + mbs[I_4x4];
h->stat.frame.i_mb_count_p = mbs[P_L0] + mbs[P_8x8];
for( i = B_DIRECT; i < B_8x8; i++ )
h->stat.frame.i_mb_count_p += mbs[i];
if( h->mb.b_variable_qp )
{
for( i = 1; i < h->param.i_threads; i++ )
rc->qpa += rc[i].qpa;
rc->qpa /= h->mb.i_mb_count;
}
else
rc->qpa = rc->qp;
h->fdec->f_qp_avg = rc->qpa;
if( h->param.rc.b_stat_write )
{
char c_type = rc->slice_type==SLICE_TYPE_I ? (h->fenc->i_poc==0 ? 'I' : 'i')
: rc->slice_type==SLICE_TYPE_P ? 'P'
: h->fenc->b_kept_as_ref ? 'B' : 'b';
int dir_frame = h->stat.frame.i_direct_score[1] - h->stat.frame.i_direct_score[0];
int dir_avg = h->stat.i_direct_score[1] - h->stat.i_direct_score[0];
char c_direct = h->mb.b_direct_auto_write ?
( dir_frame>0 ? 's' : dir_frame<0 ? 't' :
dir_avg>0 ? 's' : dir_avg<0 ? 't' : '-' )
: '-';
fprintf( rc->p_stat_file_out,
"in:%d out:%d type:%c q:%.2f itex:%d ptex:%d mv:%d misc:%d imb:%d pmb:%d smb:%d d:%c;\n",
h->fenc->i_frame, h->i_frame,
c_type, rc->qpa,
h->stat.frame.i_itex_bits, h->stat.frame.i_ptex_bits,
h->stat.frame.i_hdr_bits, h->stat.frame.i_misc_bits,
h->stat.frame.i_mb_count_i,
h->stat.frame.i_mb_count_p,
h->stat.frame.i_mb_count_skip,
c_direct);
}
if( rc->b_abr )
{
if( rc->slice_type != SLICE_TYPE_B )
rc->cplxr_sum += bits * qp2qscale(rc->qpa) / rc->last_rceq;
else
{
/* Depends on the fact that B-frame's QP is an offset from the following P-frame's.
* Not perfectly accurate with B-refs, but good enough. */
rc->cplxr_sum += bits * qp2qscale(rc->qpa) / (rc->last_rceq * fabs(h->param.rc.f_pb_factor));
}
rc->cplxr_sum *= rc->cbr_decay;
rc->wanted_bits_window += rc->bitrate / rc->fps;
rc->wanted_bits_window *= rc->cbr_decay;
rc->accum_p_qp *= .95;
rc->accum_p_norm *= .95;
rc->accum_p_norm += 1;
if( rc->slice_type == SLICE_TYPE_I )
rc->accum_p_qp += rc->qpa * fabs(h->param.rc.f_ip_factor);
else
rc->accum_p_qp += rc->qpa;
}
if( rc->b_2pass )
{
rc->expected_bits_sum += qscale2bits( rc->rce, qp2qscale(rc->rce->new_qp) );
}
if( h->mb.b_variable_qp )
{
if( rc->slice_type == SLICE_TYPE_B )
{
rc->bframe_bits += bits;
if( !h->frames.current[0] || !IS_X264_TYPE_B(h->frames.current[0]->i_type) )
update_predictor( &rc->pred_b_from_p, qp2qscale(rc->qpa), h->fref1[0]->i_satd, rc->bframe_bits / rc->bframes );
}
else
{
/* Update row predictor based on data collected by other threads. */
int y;
for( y = rc->last_row+1; y < h->sps->i_mb_height; y++ )
update_predictor( rc->row_pred, qp2qscale(h->fdec->i_row_qp[y]), h->fdec->i_row_satd[y], h->fdec->i_row_bits[y] );
rc->row_preds[rc->slice_type] = *rc->row_pred;
}
}
update_vbv( h, bits );
if( rc->slice_type != SLICE_TYPE_B )
rc->last_non_b_pict_type = rc->slice_type;
}
/****************************************************************************
* 2 pass functions
***************************************************************************/
double x264_eval( char *s, double *const_value, const char **const_name,
double (**func1)(void *, double), const char **func1_name,
double (**func2)(void *, double, double), char **func2_name,
void *opaque );
/**
* modify the bitrate curve from pass1 for one frame
*/
static double get_qscale(x264_t *h, ratecontrol_entry_t *rce, double rate_factor, int frame_num)
{
x264_ratecontrol_t *rcc= h->rc;
const int pict_type = rce->pict_type;
double q;
int i;
double const_values[]={
rce->i_tex_bits * rce->qscale,
rce->p_tex_bits * rce->qscale,
(rce->i_tex_bits + rce->p_tex_bits) * rce->qscale,
rce->mv_bits * rce->qscale,
(double)rce->i_count / rcc->nmb,
(double)rce->p_count / rcc->nmb,
(double)rce->s_count / rcc->nmb,
rce->pict_type == SLICE_TYPE_I,
rce->pict_type == SLICE_TYPE_P,
rce->pict_type == SLICE_TYPE_B,
h->param.rc.f_qcompress,
rcc->i_cplx_sum[SLICE_TYPE_I] / rcc->frame_count[SLICE_TYPE_I],
rcc->i_cplx_sum[SLICE_TYPE_P] / rcc->frame_count[SLICE_TYPE_P],
rcc->p_cplx_sum[SLICE_TYPE_P] / rcc->frame_count[SLICE_TYPE_P],
rcc->p_cplx_sum[SLICE_TYPE_B] / rcc->frame_count[SLICE_TYPE_B],
(rcc->i_cplx_sum[pict_type] + rcc->p_cplx_sum[pict_type]) / rcc->frame_count[pict_type],
rce->blurred_complexity,
0
};
static const char *const_names[]={
"iTex",
"pTex",
"tex",
"mv",
"iCount",
"pCount",
"sCount",
"isI",
"isP",
"isB",
"qComp",
"avgIITex",
"avgPITex",
"avgPPTex",
"avgBPTex",
"avgTex",
"blurCplx",
NULL
};
static double (*func1[])(void *, double)={
// (void *)bits2qscale,
(void *)qscale2bits,
NULL
};
static const char *func1_names[]={
// "bits2qp",
"qp2bits",
NULL
};
q = x264_eval((char*)h->param.rc.psz_rc_eq, const_values, const_names, func1, func1_names, NULL, NULL, rce);
// avoid NaN's in the rc_eq
/* if(!isfinite(q) || rce->i_tex_bits + rce->p_tex_bits + rce->mv_bits == 0)
q = rcc->last_qscale;
else {*/
rcc->last_rceq = q;
q /= rate_factor;
rcc->last_qscale = q;
// }
for( i = rcc->i_zones-1; i >= 0; i-- )
{
x264_zone_t *z = &rcc->zones[i];
if( frame_num >= z->i_start && frame_num <= z->i_end )
{
if( z->b_force_qp )
q = qp2qscale(z->i_qp);
else
q /= z->f_bitrate_factor;
break;
}
}
return q;
}
static double get_diff_limited_q(x264_t *h, ratecontrol_entry_t *rce, double q)
{
x264_ratecontrol_t *rcc = h->rc;
const int pict_type = rce->pict_type;
// force I/B quants as a function of P quants
const double last_p_q = rcc->last_qscale_for[SLICE_TYPE_P];
const double last_non_b_q= rcc->last_qscale_for[rcc->last_non_b_pict_type];
if( pict_type == SLICE_TYPE_I )
{
double iq = q;
double pq = qp2qscale( rcc->accum_p_qp / rcc->accum_p_norm );
double ip_factor = fabs( h->param.rc.f_ip_factor );
/* don't apply ip_factor if the following frame is also I */
if( rcc->accum_p_norm <= 0 )
q = iq;
else if( h->param.rc.f_ip_factor < 0 )
q = iq / ip_factor;
else if( rcc->accum_p_norm >= 1 )
q = pq / ip_factor;
else
q = rcc->accum_p_norm * pq / ip_factor + (1 - rcc->accum_p_norm) * iq;
}
else if( pict_type == SLICE_TYPE_B )
{
if( h->param.rc.f_pb_factor > 0 )
q = last_non_b_q;
if( !rce->kept_as_ref )
q *= fabs( h->param.rc.f_pb_factor );
}
else if( pict_type == SLICE_TYPE_P
&& rcc->last_non_b_pict_type == SLICE_TYPE_P
&& rce->i_tex_bits + rce->p_tex_bits == 0 )
{
q = last_p_q;
}
/* last qscale / qdiff stuff */
if(rcc->last_non_b_pict_type==pict_type
&& (pict_type!=SLICE_TYPE_I || rcc->last_accum_p_norm < 1))
{
double last_q = rcc->last_qscale_for[pict_type];
double max_qscale = last_q * rcc->lstep;
double min_qscale = last_q / rcc->lstep;
if (q > max_qscale) q = max_qscale;
else if(q < min_qscale) q = min_qscale;
}
rcc->last_qscale_for[pict_type] = q;
if(pict_type!=SLICE_TYPE_B)
rcc->last_non_b_pict_type = pict_type;
if(pict_type==SLICE_TYPE_I)
{
rcc->last_accum_p_norm = rcc->accum_p_norm;
rcc->accum_p_norm = 0;
rcc->accum_p_qp = 0;
}
if(pict_type==SLICE_TYPE_P)
{
float mask = 1 - pow( (float)rce->i_count / rcc->nmb, 2 );
rcc->accum_p_qp = mask * (qscale2qp(q) + rcc->accum_p_qp);
rcc->accum_p_norm = mask * (1 + rcc->accum_p_norm);
}
return q;
}
static double predict_size( predictor_t *p, double q, double var )
{
return p->coeff*var / (q*p->count);
}
static void update_predictor( predictor_t *p, double q, double var, double bits )
{
if( var < 10 )
return;
p->count *= p->decay;
p->coeff *= p->decay;
p->count ++;
p->coeff += bits*q / var;
}
static void update_vbv( x264_t *h, int bits )
{
x264_ratecontrol_t *rcc = h->rc;
if( rcc->last_satd >= h->mb.i_mb_count )
update_predictor( &rcc->pred[rcc->slice_type], qp2qscale(rcc->qpa), rcc->last_satd, bits );
if( !rcc->b_vbv )
return;
rcc->buffer_fill += rcc->buffer_rate - bits;
if( rcc->buffer_fill < 0 && !rcc->b_2pass )
x264_log( h, X264_LOG_WARNING, "VBV underflow (%.0f bits)\n", rcc->buffer_fill );
rcc->buffer_fill = x264_clip3( rcc->buffer_fill, 0, rcc->buffer_size );
}
// apply VBV constraints and clip qscale to between lmin and lmax
static double clip_qscale( x264_t *h, int pict_type, double q )
{
x264_ratecontrol_t *rcc = h->rc;
double lmin = rcc->lmin[pict_type];
double lmax = rcc->lmax[pict_type];
double q0 = q;
/* B-frames are not directly subject to VBV,
* since they are controlled by the P-frames' QPs.
* FIXME: in 2pass we could modify previous frames' QP too,
* instead of waiting for the buffer to fill */
if( rcc->b_vbv &&
( pict_type == SLICE_TYPE_P ||
( pict_type == SLICE_TYPE_I && rcc->last_non_b_pict_type == SLICE_TYPE_I ) ) )
{
if( rcc->buffer_fill/rcc->buffer_size < 0.5 )
q /= x264_clip3f( 2.0*rcc->buffer_fill/rcc->buffer_size, 0.5, 1.0 );
}
if( rcc->b_vbv && rcc->last_satd > 0 )
{
/* Now a hard threshold to make sure the frame fits in VBV.
* This one is mostly for I-frames. */
double bits = predict_size( &rcc->pred[rcc->slice_type], q, rcc->last_satd );
double qf = 1.0;
if( bits > rcc->buffer_fill/2 )
qf = x264_clip3f( rcc->buffer_fill/(2*bits), 0.2, 1.0 );
q /= qf;
bits *= qf;
if( bits < rcc->buffer_rate/2 )
q *= bits*2/rcc->buffer_rate;
q = X264_MAX( q0, q );
/* Check B-frame complexity, and use up any bits that would
* overflow before the next P-frame. */
if( rcc->slice_type == SLICE_TYPE_P )
{
int nb = rcc->bframes;
double pbbits = bits;
double bbits = predict_size( &rcc->pred_b_from_p, q * h->param.rc.f_pb_factor, rcc->last_satd );
double space;
if( bbits > rcc->buffer_rate )
nb = 0;
pbbits += nb * bbits;
space = rcc->buffer_fill + (1+nb)*rcc->buffer_rate - rcc->buffer_size;
if( pbbits < space )
{
q *= X264_MAX( pbbits / space,
bits / (0.5 * rcc->buffer_size) );
}
q = X264_MAX( q0-5, q );
}
}
if(lmin==lmax)
return lmin;
else if(rcc->b_2pass)
{
double min2 = log(lmin);
double max2 = log(lmax);
q = (log(q) - min2)/(max2-min2) - 0.5;
q = 1.0/(1.0 + exp(-4*q));
q = q*(max2-min2) + min2;
return exp(q);
}
else
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -