📄 enmacroblock.c
字号:
/*****************************************************************************
* macroblock.c: h264 encoder library
*****************************************************************************
* Copyright (C) 2003 Laurent Aimar
* $Id: macroblock.c,v 1.1 2004/06/03 19:27:08 fenrir Exp $
*
* Authors: Laurent Aimar <fenrir@via.ecp.fr>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111, USA.
*****************************************************************************/
#include <stdio.h>
#include <string.h>
#include "common.h"
#include "enmacroblock.h"
/* def_quant4_mf only for probe_skip; actual encoding uses matrices from set.c */
/* FIXME this seems to make better decisions with cqm=jvt, but could screw up
* with general custom matrices. */
static const int def_quant4_mf[6][4][4] =
{
{ { 13107, 8066, 13107, 8066 }, { 8066, 5243, 8066, 5243 },
{ 13107, 8066, 13107, 8066 }, { 8066, 5243, 8066, 5243 } },
{ { 11916, 7490, 11916, 7490 }, { 7490, 4660, 7490, 4660 },
{ 11916, 7490, 11916, 7490 }, { 7490, 4660, 7490, 4660 } },
{ { 10082, 6554, 10082, 6554 }, { 6554, 4194, 6554, 4194 },
{ 10082, 6554, 10082, 6554 }, { 6554, 4194, 6554, 4194 } },
{ { 9362, 5825, 9362, 5825 }, { 5825, 3647, 5825, 3647 },
{ 9362, 5825, 9362, 5825 }, { 5825, 3647, 5825, 3647 } },
{ { 8192, 5243, 8192, 5243 }, { 5243, 3355, 5243, 3355 },
{ 8192, 5243, 8192, 5243 }, { 5243, 3355, 5243, 3355 } },
{ { 7282, 4559, 7282, 4559 }, { 4559, 2893, 4559, 2893 },
{ 7282, 4559, 7282, 4559 }, { 4559, 2893, 4559, 2893 } }
};
/****************************************************************************
* Scan and Quant functions
****************************************************************************/
#define ZIG(i,y,x) level[i] = dct[x][y];
static inline void scan_zigzag_8x8full( int level[64], int16_t dct[8][8] )
{
ZIG( 0,0,0) ZIG( 1,0,1) ZIG( 2,1,0) ZIG( 3,2,0)
ZIG( 4,1,1) ZIG( 5,0,2) ZIG( 6,0,3) ZIG( 7,1,2)
ZIG( 8,2,1) ZIG( 9,3,0) ZIG(10,4,0) ZIG(11,3,1)
ZIG(12,2,2) ZIG(13,1,3) ZIG(14,0,4) ZIG(15,0,5)
ZIG(16,1,4) ZIG(17,2,3) ZIG(18,3,2) ZIG(19,4,1)
ZIG(20,5,0) ZIG(21,6,0) ZIG(22,5,1) ZIG(23,4,2)
ZIG(24,3,3) ZIG(25,2,4) ZIG(26,1,5) ZIG(27,0,6)
ZIG(28,0,7) ZIG(29,1,6) ZIG(30,2,5) ZIG(31,3,4)
ZIG(32,4,3) ZIG(33,5,2) ZIG(34,6,1) ZIG(35,7,0)
ZIG(36,7,1) ZIG(37,6,2) ZIG(38,5,3) ZIG(39,4,4)
ZIG(40,3,5) ZIG(41,2,6) ZIG(42,1,7) ZIG(43,2,7)
ZIG(44,3,6) ZIG(45,4,5) ZIG(46,5,4) ZIG(47,6,3)
ZIG(48,7,2) ZIG(49,7,3) ZIG(50,6,4) ZIG(51,5,5)
ZIG(52,4,6) ZIG(53,3,7) ZIG(54,4,7) ZIG(55,5,6)
ZIG(56,6,5) ZIG(57,7,4) ZIG(58,7,5) ZIG(59,6,6)
ZIG(60,5,7) ZIG(61,6,7) ZIG(62,7,6) ZIG(63,7,7)
}
static inline void scan_zigzag_4x4full( int level[16], int16_t dct[4][4] )
{
ZIG( 0,0,0) ZIG( 1,0,1) ZIG( 2,1,0) ZIG( 3,2,0)
ZIG( 4,1,1) ZIG( 5,0,2) ZIG( 6,0,3) ZIG( 7,1,2)
ZIG( 8,2,1) ZIG( 9,3,0) ZIG(10,3,1) ZIG(11,2,2)
ZIG(12,1,3) ZIG(13,2,3) ZIG(14,3,2) ZIG(15,3,3)
}
static inline void scan_zigzag_4x4( int level[15], int16_t dct[4][4] )
{
ZIG( 0,0,1) ZIG( 1,1,0) ZIG( 2,2,0)
ZIG( 3,1,1) ZIG( 4,0,2) ZIG( 5,0,3) ZIG( 6,1,2)
ZIG( 7,2,1) ZIG( 8,3,0) ZIG( 9,3,1) ZIG(10,2,2)
ZIG(11,1,3) ZIG(12,2,3) ZIG(13,3,2) ZIG(14,3,3)
}
static inline void scan_zigzag_2x2_dc( int level[4], int16_t dct[2][2] )
{
ZIG(0,0,0)
ZIG(1,0,1)
ZIG(2,1,0)
ZIG(3,1,1)
}
#undef ZIG
#define ZIG(i,y,x) {\
int oe = x+y*FENC_STRIDE;\
int od = x+y*FDEC_STRIDE;\
level[i] = p_src[oe] - p_dst[od];\
p_dst[od] = p_src[oe];\
}
static inline void sub_zigzag_4x4full( int level[16], const uint8_t *p_src, uint8_t *p_dst )
{
ZIG( 0,0,0) ZIG( 1,0,1) ZIG( 2,1,0) ZIG( 3,2,0)
ZIG( 4,1,1) ZIG( 5,0,2) ZIG( 6,0,3) ZIG( 7,1,2)
ZIG( 8,2,1) ZIG( 9,3,0) ZIG(10,3,1) ZIG(11,2,2)
ZIG(12,1,3) ZIG(13,2,3) ZIG(14,3,2) ZIG(15,3,3)
}
static inline void sub_zigzag_4x4( int level[15], const uint8_t *p_src, uint8_t *p_dst )
{
ZIG( 0,0,1) ZIG( 1,1,0) ZIG( 2,2,0)
ZIG( 3,1,1) ZIG( 4,0,2) ZIG( 5,0,3) ZIG( 6,1,2)
ZIG( 7,2,1) ZIG( 8,3,0) ZIG( 9,3,1) ZIG(10,2,2)
ZIG(11,1,3) ZIG(12,2,3) ZIG(13,3,2) ZIG(14,3,3)
}
#undef ZIG
static void quant_8x8( x264_t *h, int16_t dct[8][8], int quant_mf[6][8][8], int i_qscale, int b_intra )
{
const int i_qbits = 16 + i_qscale / 6;
const int i_mf = i_qscale % 6;
const int f = ( 1 << i_qbits ) / ( b_intra ? 3 : 6 );
h->quantf.quant_8x8_core( dct, quant_mf[i_mf], i_qbits, f );
}
static void quant_4x4( x264_t *h, int16_t dct[4][4], int quant_mf[6][4][4], int i_qscale, int b_intra )
{
const int i_qbits = 15 + i_qscale / 6;
const int i_mf = i_qscale % 6;
const int f = ( 1 << i_qbits ) / ( b_intra ? 3 : 6 );
h->quantf.quant_4x4_core( dct, quant_mf[i_mf], i_qbits, f );
}
static void quant_4x4_dc( x264_t *h, int16_t dct[4][4], int quant_mf[6][4][4], int i_qscale )
{
const int i_qbits = 16 + i_qscale / 6;
const int i_mf = i_qscale % 6;
const int f = ( 1 << i_qbits ) / 3;
h->quantf.quant_4x4_dc_core( dct, quant_mf[i_mf][0][0], i_qbits, f );
}
static void quant_2x2_dc( x264_t *h, int16_t dct[2][2], int quant_mf[6][4][4], int i_qscale, int b_intra )
{
const int i_qbits = 16 + i_qscale / 6;
const int i_mf = i_qscale % 6;
const int f = ( 1 << i_qbits ) / ( b_intra ? 3 : 6 );
h->quantf.quant_2x2_dc_core( dct, quant_mf[i_mf][0][0], i_qbits, f );
}
/* (ref: JVT-B118)
* x264_mb_decimate_score: given dct coeffs it returns a score to see if we could empty this dct coeffs
* to 0 (low score means set it to null)
* Used in inter macroblock (luma and chroma)
* luma: for a 8x8 block: if score < 4 -> null
* for the complete mb: if score < 6 -> null
* chroma: for the complete mb: if score < 7 -> null
*/
static int x264_mb_decimate_score( int *dct, int i_max )
{
static const int i_ds_table4[16] = {
3,2,2,1,1,1,0,0,0,0,0,0,0,0,0,0 };
static const int i_ds_table8[64] = {
3,3,3,3,2,2,2,2,2,2,2,2,1,1,1,1,
1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 };
const int *ds_table = (i_max == 64) ? i_ds_table8 : i_ds_table4;
int i_score = 0;
int idx = i_max - 1;
while( idx >= 0 && dct[idx] == 0 )
idx--;
while( idx >= 0 )
{
int i_run;
if( abs( dct[idx--] ) > 1 )
return 9;
i_run = 0;
while( idx >= 0 && dct[idx] == 0 )
{
idx--;
i_run++;
}
i_score += ds_table[i_run];
}
return i_score;
}
void x264_mb_encode_i4x4( x264_t *h, int idx, int i_qscale )
{
int x = 4 * block_idx_x[idx];
int y = 4 * block_idx_y[idx];
uint8_t *p_src = &h->mb.pic.p_fenc[0][x+y*FENC_STRIDE];
uint8_t *p_dst = &h->mb.pic.p_fdec[0][x+y*FDEC_STRIDE];
int16_t dct4x4[4][4];
if( h->mb.b_lossless )
{
sub_zigzag_4x4full( h->dct.block[idx].luma4x4, p_src, p_dst );
return;
}
h->dctf.sub4x4_dct( dct4x4, p_src, p_dst );//对4*4子块dct变换从p_src和p_dst取出数据变换后放在dct4*4中
/* if( h->mb.b_trellis )
x264_quant_4x4_trellis( h, dct4x4, CQM_4IY, i_qscale, DCT_LUMA_4x4, 1 );
else*/
quant_4x4( h, dct4x4, h->quant4_mf[CQM_4IY], i_qscale, 1 );//对dct4*4量化
scan_zigzag_4x4full( h->dct.block[idx].luma4x4, dct4x4 );//4*4 Z字型全扫描结果存放于 h->dct.block[idx].luma4x4
h->quantf.dequant_4x4( dct4x4, h->dequant4_mf[CQM_4IY], i_qscale );//对dct4x4中的数据解量化
/* output samples to fdec */
h->dctf.add4x4_idct( p_dst, dct4x4 );//对dct4x4中的数据进行idct变换,结果放置于p_dst中,用于重建。
}
void x264_mb_encode_i8x8( x264_t *h, int idx, int i_qscale )
{
int x = 8 * (idx&1);
int y = 8 * (idx>>1);
uint8_t *p_src = &h->mb.pic.p_fenc[0][x+y*FENC_STRIDE];
uint8_t *p_dst = &h->mb.pic.p_fdec[0][x+y*FDEC_STRIDE];
int16_t dct8x8[8][8];
h->dctf.sub8x8_dct8( dct8x8, p_src, p_dst );
/* if( h->mb.b_trellis )
x264_quant_8x8_trellis( h, dct8x8, CQM_8IY, i_qscale, 1 );
else */
quant_8x8( h, dct8x8, h->quant8_mf[CQM_8IY], i_qscale, 1 );
scan_zigzag_8x8full( h->dct.luma8x8[idx], dct8x8 );
h->quantf.dequant_8x8( dct8x8, h->dequant8_mf[CQM_8IY], i_qscale );
h->dctf.add8x8_idct8( p_dst, dct8x8 );
}
static void x264_mb_encode_i16x16( x264_t *h, int i_qscale )
{
uint8_t *p_src = h->mb.pic.p_fenc[0];
uint8_t *p_dst = h->mb.pic.p_fdec[0];
int16_t dct4x4[16+1][4][4];
int i;
if( h->mb.b_lossless )
{
for( i = 0; i < 16; i++ )
{
int oe = block_idx_x[i]*4 + block_idx_y[i]*4*FENC_STRIDE;
int od = block_idx_x[i]*4 + block_idx_y[i]*4*FDEC_STRIDE;
sub_zigzag_4x4( h->dct.block[i].residual_ac, p_src+oe, p_dst+od );
dct4x4[0][block_idx_x[i]][block_idx_y[i]] = p_src[oe] - p_dst[od];
p_dst[od] = p_src[oe];
}
scan_zigzag_4x4full( h->dct.luma16x16_dc, dct4x4[0] );
return;
}
h->dctf.sub16x16_dct( &dct4x4[1], p_src, p_dst );
for( i = 0; i < 16; i++ )
{
/* copy dc coeff */
dct4x4[0][block_idx_y[i]][block_idx_x[i]] = dct4x4[1+i][0][0];
/* quant/scan/dequant */
/* if( h->mb.b_trellis )
x264_quant_4x4_trellis( h, dct4x4[1+i], CQM_4IY, i_qscale, DCT_LUMA_AC, 1 );
else*/
quant_4x4( h, dct4x4[1+i], h->quant4_mf[CQM_4IY], i_qscale, 1 );
scan_zigzag_4x4( h->dct.block[i].residual_ac, dct4x4[1+i] );
h->quantf.dequant_4x4( dct4x4[1+i], h->dequant4_mf[CQM_4IY], i_qscale );
}
h->dctf.dct4x4dc( dct4x4[0] );
quant_4x4_dc( h, dct4x4[0], h->quant4_mf[CQM_4IY], i_qscale );
scan_zigzag_4x4full( h->dct.luma16x16_dc, dct4x4[0] );
/* output samples to fdec */
h->dctf.idct4x4dc( dct4x4[0] );
x264_mb_dequant_4x4_dc( dct4x4[0], h->dequant4_mf[CQM_4IY], i_qscale ); /* XXX not inversed */
/* calculate dct coeffs */
for( i = 0; i < 16; i++ )
{
/* copy dc coeff */
dct4x4[1+i][0][0] = dct4x4[0][block_idx_y[i]][block_idx_x[i]];
}
/* put pixels to fdec */
h->dctf.add16x16_idct( p_dst, &dct4x4[1] );
}
static void x264_mb_encode_8x8_chroma( x264_t *h, int b_inter, int i_qscale )
{
int i, ch;
int b_decimate = b_inter && (h->sh.i_type == SLICE_TYPE_B || h->param.analyse.b_dct_decimate);
for( ch = 0; ch < 2; ch++ )
{
uint8_t *p_src = h->mb.pic.p_fenc[1+ch];
uint8_t *p_dst = h->mb.pic.p_fdec[1+ch];
int i_decimate_score = 0;
int16_t dct2x2[2][2];
int16_t dct4x4[4][4][4];
if( h->mb.b_lossless )
{
for( i = 0; i < 4; i++ )
{
int oe = block_idx_x[i]*4 + block_idx_y[i]*4*FENC_STRIDE;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -