⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 crossoversbxfltvecop.hpp

📁 非常好的进化算法EC 实现平台 可以实现多种算法 GA GP
💻 HPP
字号:
/* *  Open BEAGLE *  Copyright (C) 2001-2005 by Christian Gagne and Marc Parizeau * *  This library is free software; you can redistribute it and/or *  modify it under the terms of the GNU Lesser General Public *  License as published by the Free Software Foundation; either *  version 2.1 of the License, or (at your option) any later version. * *  This library is distributed in the hope that it will be useful, *  but WITHOUT ANY WARRANTY; without even the implied warranty of *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU *  Lesser General Public License for more details. * *  You should have received a copy of the GNU Lesser General Public *  License along with this library; if not, write to the Free Software *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *  Contact: *  Laboratoire de Vision et Systemes Numeriques *  Departement de genie electrique et de genie informatique *  Universite Laval, Quebec, Canada, G1K 7P4 *  http://vision.gel.ulaval.ca * *//*! *  \file   beagle/GA/CrossoverSBXFltVecOp.hpp *  \brief  Definition of the class GA::CrossoverSBXFltVecOp. *  \author Christian Gagne *  \author Marc Parizeau *  $Revision: 1.5 $ *  $Date: 2005/09/30 15:04:53 $ */#ifndef Beagle_GA_CrossoverSBXFltVecOp_hpp#define Beagle_GA_CrossoverSBXFltVecOp_hpp#include <string>#include "beagle/config.hpp"#include "beagle/macros.hpp"#include "beagle/Object.hpp"#include "beagle/CrossoverOp.hpp"namespace Beagle {namespace GA {/*! *  \class CrossoverSBXFltVecOp beagle/GA/CrossoverSBXFltVecOp.hpp *    "beagle/GA/CrossoverSBXFltVecOp.hpp" *  \brief Real-valued GA simulated binary crossover (SBX) operator class. *  \ingroup GAF *  \ingroup GAFV * *  Real-valued GA simulated binary crossover (SBX) proceed by mating two *  float vectors, \f$(x^{(1,t)},x^{(2,t)})\f$. The resulting children *  \f$(x^{(1,t+1)},x^{(2,t+1)})\f$ are equal to *  \f$x^{(1,t+1)}_i=0.5((1+\beta_i) x^{(1,t)}_i+(1-\beta_i) x^{(2,t)}_i)\f$ and *  \f$x^{(2,t+1)}_i=0.5((1-\beta_i) x^{(1,t)}_i+(1+\beta_i) x^{(2,t)}_i)\f$, where *  \f$u_i\in[0,1]\f$ is a random value, \f$\beta_i=(2u_i)^{1/\nu+1}\f$ if \f$u_i\le0.5\f$ *  otherwize \f$(\frac{1}{2(1-u_i)})^{1/\nu+1}\f$, and \f$\nu>0\f$ is user-configurable *  parameter. * *  Reference: Deb K., Beyer H.-G. (2001). Self-Adaptive Genetic Algorithms with *  Simulated Binary Crossover. Evolutionary Computation, 9(2), pp. 197-221. * */class CrossoverSBXFltVecOp : public CrossoverOp {public:  //! GA::CrossoverSBXFltVecOp allocator type.  typedef AllocatorT<CrossoverSBXFltVecOp,CrossoverOp::Alloc>          Alloc;  //! GA::CrossoverSBXFltVecOp handle type.  typedef PointerT<CrossoverSBXFltVecOp,CrossoverOp::Handle>          Handle;  //! GA::CrossoverSBXFltVecOp bag type.  typedef ContainerT<CrossoverSBXFltVecOp,CrossoverOp::Bag>          Bag;  explicit CrossoverSBXFltVecOp(string inMatingPbName="ga.cxsbx.prob",                                string inName="GA-CrossoverSBXFltVecOp");  virtual ~CrossoverSBXFltVecOp() { }  virtual void initialize(System& ioSystem);  virtual bool mate(Individual& ioIndiv1, Context& ioContext1,                    Individual& ioIndiv2, Context& ioContext2);protected:  DoubleArray::Handle mMaxValue;  //!< Max value of GA float vectors.  DoubleArray::Handle mMinValue;  //!< Min value of GA float vectors.  Double::Handle mNu;             //!< SBX Nu parameter.};}}#endif // Beagle_GA_CrossoverSBXFltVecOp_hpp

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -