📄 crossoverop.cpp
字号:
for(unsigned int i=0; i<lIndiv2.size(); i++) { if(lIndiv2[i]->getPrimitiveSetIndex() == lPrimitiveSetIndex1) { lSizeIndiv2 += lIndiv2[i]->size(); } } // Check to see that there is at least one node that can be selected if(lSizeIndiv2==0) { Beagle_LogVerboseM( ioContext1.getSystem().getLogger(), "crossover", "Beagle::GP::CrossoverConstrainedOp", string("Crossover attempt failed: The tree chosen from the first individual has a primitive set index of ")+ uint2str(lPrimitiveSetIndex1)+ string(" and there are no trees in the second individual with that primitive set index") ); continue; } // Choose a node in the second individual unsigned int lChoosenNode2 = lContext2.getSystem().getRandomizer().rollInteger(0, lSizeIndiv2-1); // Find which tree the choosen node is in. unsigned int lChoosenTree2 = 0; for(; lChoosenTree2<lIndiv2.size(); lChoosenTree2++) { if(lIndiv2[lChoosenTree2]->getPrimitiveSetIndex() == lPrimitiveSetIndex1) { if(lChoosenNode2 < lIndiv2[lChoosenTree2]->size()) break; Beagle_AssertM(lChoosenNode2 >= lIndiv2[lChoosenTree2]->size()); lChoosenNode2 -= lIndiv2[lChoosenTree2]->size(); } } Beagle_AssertM(lChoosenTree2 < lIndiv2.size()); GP::Tree& lTree2 = *lIndiv2[lChoosenTree2]; // Choose a type of node (branch or leaf) following the distribution probability and change the // node for another node of the same tree if the types mismatch. if(lTree2.size() > 1) { bool lTypeNode2 = (lContext2.getSystem().getRandomizer().rollUniform(0.0, 1.0) < lDistrProba); while((lTree2[lChoosenNode2].mPrimitive->getNumberArguments() != 0) != lTypeNode2) { lChoosenNode2 = lContext2.getSystem().getRandomizer().rollInteger(0, lTree2.size()-1); } } // Set the first context to the node of the first tree. // Check if depth is ok. Do a new crossover attempt if not. lTree1.setContextToNode(lChoosenNode1, lContext1); unsigned int lNewDepthTree1 = lContext1.getCallStackSize() + lTree2.getTreeDepth(lChoosenNode2) - 1; if(lNewDepthTree1 > lMaxTreeDepth) { Beagle_LogVerboseM( ioContext1.getSystem().getLogger(), "crossover", "Beagle::GP::CrossoverConstrainedOp", string("Crossover attempt failed because the depth of the resulting tree in the ")+ string("first individual would exceed the depth constraint") ); continue; } // Set the first context to the node of the second tree. // Check if depth is ok. Do a new crossover attempt if not. lTree2.setContextToNode(lChoosenNode2, lContext2); unsigned int lNewDepthTree2 = lContext2.getCallStackSize() + lTree1.getTreeDepth(lChoosenNode1) - 1; if(lNewDepthTree2 > lMaxTreeDepth) { Beagle_LogVerboseM( ioContext1.getSystem().getLogger(), "crossover", "Beagle::GP::CrossoverConstrainedOp", string("Crossover attempt failed because the depth of the resulting tree in the ")+ string("second individual would exceed the depth constraint") ); continue; } // Mate the trees. Beagle_LogVerboseM( ioContext1.getSystem().getLogger(), "crossover", "Beagle::GP::CrossoverOp", string("Trying to mate the ")+uint2ordinal(lChoosenTree1+1)+ string(" tree of the first individual with the ")+uint2ordinal(lChoosenTree2+1)+ string(" tree of the second individual") ); Beagle_LogVerboseM( ioContext1.getSystem().getLogger(), "crossover", "Beagle::GP::CrossoverOp", string("Trying to exchange the ")+uint2ordinal(lChoosenNode1+1)+ string(" node of the first tree with the ")+uint2ordinal(lChoosenNode2+1)+ string(" node of the second tree") ); mateTrees(lTree1, lChoosenNode1, lContext1, lTree2, lChoosenNode2, lContext2); lMatingDone = true; Beagle_LogVerboseM( ioContext1.getSystem().getLogger(), "crossover", "Beagle::GP::CrossoverOp", "GP crossover valid" ); break; // The crossover is valid. } // Replace the contexts. lContext1.setGenotypeHandle(lOldTreeHandle1); lContext1.setGenotypeIndex(lOldTreeIndex1); lContext2.setGenotypeHandle(lOldTreeHandle2); lContext2.setGenotypeIndex(lOldTreeIndex2); if(lMatingDone) { Beagle_LogDebugM( ioContext1.getSystem().getLogger(), "crossover", "Beagle::GP::CrossoverOp", string("First individual mated (after GP crossover): ")+ lIndiv1.serialize() ); Beagle_LogDebugM( ioContext1.getSystem().getLogger(), "crossover", "Beagle::GP::CrossoverOp", string("Second individual mated (after GP crossover): ")+ lIndiv2.serialize() ); } else { Beagle_LogVerboseM( ioContext1.getSystem().getLogger(), "crossover", "Beagle::GP::CrossoverOp", "No GP crossover done" ); } return lMatingDone; Beagle_StackTraceEndM("bool GP::CrossoverOp::mate(Beagle::Individual& ioIndiv1, Beagle::Context& ioContext1, Beagle::Individual& ioIndiv2, Beagle::Context& ioContext2)");}/*! * \brief Mate two GP trees on given points. * \param ioTree1 First tree to mate. * \param inNode1 Node index of the croosover point in the first tree to mate. * \param ioContext1 Evolutionary context relatively to the first tree. * \param ioTree2 Second tree to mate. * \param inNode2 Node index of the croosover point in the second tree to mate. * \param ioContext2 Evolutionary context relatively to the second tree. */void GP::CrossoverOp::mateTrees(GP::Tree& ioTree1, unsigned int inNode1, GP::Context& ioContext1, GP::Tree& ioTree2, unsigned int inNode2, GP::Context& ioContext2){ Beagle_StackTraceBeginM(); Beagle_AssertM(&ioTree1 != &ioTree2); unsigned int lSwapSize1 = ioTree1[inNode1].mSubTreeSize; unsigned int lSwapSize2 = ioTree2[inNode2].mSubTreeSize; if(lSwapSize1 <= lSwapSize2) { std::swap_ranges(ioTree1.begin()+inNode1, ioTree1.begin()+inNode1+lSwapSize1, ioTree2.begin()+inNode2); ioTree1.insert(ioTree1.begin()+inNode1+lSwapSize1, ioTree2.begin()+inNode2+lSwapSize1, ioTree2.begin()+inNode2+lSwapSize2); ioTree2.erase(ioTree2.begin()+inNode2+lSwapSize1, ioTree2.begin()+inNode2+lSwapSize2); } else { std::swap_ranges(ioTree1.begin()+inNode1, ioTree1.begin()+inNode1+lSwapSize2, ioTree2.begin()+inNode2); ioTree2.insert(ioTree2.begin()+inNode2+lSwapSize2, ioTree1.begin()+inNode1+lSwapSize2, ioTree1.begin()+inNode1+lSwapSize1); ioTree1.erase(ioTree1.begin()+inNode1+lSwapSize2, ioTree1.begin()+inNode1+lSwapSize1); } int lDiffSize = lSwapSize1 - lSwapSize2; for(unsigned int i=0; i<(ioContext1.getCallStackSize()-1); i++) ioTree1[ioContext1.getCallStackElement(i)].mSubTreeSize -= lDiffSize; for(unsigned int j=0; j<(ioContext2.getCallStackSize()-1); j++) ioTree2[ioContext2.getCallStackElement(j)].mSubTreeSize += lDiffSize; Beagle_StackTraceEndM("void GP::CrossoverOp::mateTrees(GP::Tree& ioTree1, unsigned int inNode1, GP::Context& ioContext1, GP::Tree& ioTree2, unsigned int inNode2, GP::Context& ioContext2)");}/*! * \brief Read a crossover operator for XML subtree. * \param inIter XML iterator to use to read crossover operator. * \param inOpMap Operator map to use to read crossover operator. */void GP::CrossoverOp::readWithMap(PACC::XML::ConstIterator inIter, OperatorMap& inOpMap){ Beagle_StackTraceBeginM(); if((inIter->getType()!=PACC::XML::eData) || (inIter->getValue()!=getName().c_str())) { std::ostringstream lOSS; lOSS << "tag <" << getName() << "> expected!" << std::flush; throw Beagle_IOExceptionNodeM(*inIter, lOSS.str().c_str()); } string mMatingProbaReadName = inIter->getAttribute("matingpb").c_str(); if(mMatingProbaReadName.empty() == false) mMatingProbaName = mMatingProbaReadName; string mDistribPbReadName = inIter->getAttribute("distrpb").c_str(); if(mDistribPbReadName.empty() == false) mDistribPbName = mDistribPbReadName; Beagle_StackTraceEndM("void GP::CrossoverOp::readWithMap(PACC::XML::ConstIterator inIter, OperatorMap& inOpMap)");}/*! * \brief Write crossover operator into XML streamer. * \param ioStreamer XML streamer to write crossover operator into. * \param inIndent Whether XML output should be indented. */void GP::CrossoverOp::writeContent(PACC::XML::Streamer& ioStreamer, bool inIndent) const{ Beagle_StackTraceBeginM(); Beagle::CrossoverOp::writeContent(ioStreamer, inIndent); ioStreamer.insertAttribute("distrpb", mDistribPbName); Beagle_StackTraceEndM("void GP::CrossoverOp::writeContent(PACC::XML::Streamer& ioStreamer, bool inIndent) const");}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -