⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 statscalcfitnesskozaop.cpp

📁 非常好的进化算法EC 实现平台 可以实现多种算法 GA GP
💻 CPP
字号:
/* *  Open BEAGLE *  Copyright (C) 2001-2005 by Christian Gagne and Marc Parizeau * *  This library is free software; you can redistribute it and/or *  modify it under the terms of the GNU Lesser General Public *  License as published by the Free Software Foundation; either *  version 2.1 of the License, or (at your option) any later version. * *  This library is distributed in the hope that it will be useful, *  but WITHOUT ANY WARRANTY; without even the implied warranty of *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU *  Lesser General Public License for more details. * *  You should have received a copy of the GNU Lesser General Public *  License along with this library; if not, write to the Free Software *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *  Contact: *  Laboratoire de Vision et Systemes Numeriques *  Departement de genie electrique et de genie informatique *  Universite Laval, Quebec, Canada, G1K 7P4 *  http://vision.gel.ulaval.ca * *//*! *  \file   beagle/GP/src/StatsCalcFitnessKozaOp.cpp *  \brief  Source code of class StatsCalcFitnessKozaOp. *  \author Christian Gagne *  \author Marc Parizeau *  $Revision: 1.10 $ *  $Date: 2005/10/04 16:25:10 $ */#include "beagle/GP.hpp"#include <cmath>#include <sstream>using namespace Beagle;/*! *  \brief Construct a calculate stats operator. *  \param inName Name of the operator. */GP::StatsCalcFitnessKozaOp::StatsCalcFitnessKozaOp(Beagle::string inName) :  StatsCalculateOp(inName){ }/*! *  \brief Calculate statistics of a given deme. *  \param outStats Evaluated statistics. *  \param ioDeme Deme to evalute the statistics. *  \param ioContext Context of the evolution. */void GP::StatsCalcFitnessKozaOp::calculateStatsDeme(Beagle::Stats& outStats,                                                    Beagle::Deme& ioDeme,                                                    Beagle::Context& ioContext) const{  Beagle_StackTraceBeginM();  outStats.clear();  outStats.clearItems();  outStats.addItem("processed", ioContext.getProcessedDeme());  outStats.addItem("total-processed", ioContext.getTotalProcessedDeme());  if(ioDeme.size() == 0) {    outStats.setGenerationValues(string("deme")+uint2str(ioContext.getDemeIndex()+1),                                 ioContext.getGeneration(), 0, true);    outStats.resize(7);    outStats[0].mId = "normalized";    outStats[0].mAvg = 0.0;    outStats[0].mStd = 0.0;    outStats[0].mMax = 0.0;    outStats[0].mMin = 0.0;    outStats[1].mId = "adjusted";    outStats[1].mAvg = 0.0;    outStats[1].mStd = 0.0;    outStats[1].mMax = 0.0;    outStats[1].mMin = 0.0;    outStats[2].mId = "standardized";    outStats[2].mAvg = 0.0;    outStats[2].mStd = 0.0;    outStats[2].mMax = 0.0;    outStats[2].mMin = 0.0;    outStats[3].mId = "raw";    outStats[3].mAvg = 0.0;    outStats[3].mStd = 0.0;    outStats[3].mMax = 0.0;    outStats[3].mMin = 0.0;    outStats[4].mId = "hits";    outStats[4].mAvg = 0.0;    outStats[4].mStd = 0.0;    outStats[4].mMax = 0.0;    outStats[4].mMin = 0.0;    outStats[5].mId = "treedepth";    outStats[5].mAvg = 0.0;    outStats[5].mStd = 0.0;    outStats[5].mMax = 0.0;    outStats[5].mMin = 0.0;    outStats[6].mId = "treesize";    outStats[6].mAvg = 0.0;    outStats[6].mStd = 0.0;    outStats[6].mMax = 0.0;    outStats[6].mMin = 0.0;    return;  }  const GP::Deme& lGPDeme = castObjectT<const GP::Deme&>(ioDeme);  const GP::FitnessKoza::Handle lFirstIndivFitness =    castHandleT<GP::FitnessKoza>(lGPDeme[0]->getFitness());  if(ioDeme.size() == 1) {    outStats.setGenerationValues(string("deme")+uint2str(ioContext.getDemeIndex()+1),                                 ioContext.getGeneration(), 1, true);    outStats.resize(7);    outStats[0].mId = "normalized";    outStats[0].mAvg = lFirstIndivFitness->getNormalizedFitness();    outStats[0].mStd = 0.0;    outStats[0].mMax = lFirstIndivFitness->getNormalizedFitness();    outStats[0].mMin = lFirstIndivFitness->getNormalizedFitness();    outStats[1].mId = "adjusted";    outStats[1].mAvg = lFirstIndivFitness->getAdjustedFitness();    outStats[1].mStd = 0.0;    outStats[1].mMax = lFirstIndivFitness->getAdjustedFitness();    outStats[1].mMin = lFirstIndivFitness->getAdjustedFitness();    outStats[2].mId = "standardized";    outStats[2].mAvg = lFirstIndivFitness->getStandardizedFitness();    outStats[2].mStd = 0.0;    outStats[2].mMax = lFirstIndivFitness->getStandardizedFitness();    outStats[2].mMin = lFirstIndivFitness->getStandardizedFitness();    outStats[3].mId = "raw";    outStats[3].mAvg = lFirstIndivFitness->getRawFitness();    outStats[3].mStd = 0.0;    outStats[3].mMax = lFirstIndivFitness->getRawFitness();    outStats[3].mMin = lFirstIndivFitness->getRawFitness();    outStats[4].mId = "hits";    outStats[4].mAvg = lFirstIndivFitness->getHits();    outStats[4].mStd = 0.0;    outStats[4].mMax = lFirstIndivFitness->getHits();    outStats[4].mMin = lFirstIndivFitness->getHits();    outStats[5].mId = "treedepth";    outStats[5].mAvg = lGPDeme[0]->getMaxTreeDepth();    outStats[5].mStd = 0.0;    outStats[5].mMax = outStats[5].mAvg;    outStats[5].mMin = outStats[5].mAvg;    outStats[6].mId = "treesize";    outStats[6].mAvg = lGPDeme[0]->getTotalNodes();    outStats[6].mStd = 0.0;    outStats[6].mMax = outStats[6].mAvg;    outStats[6].mMin = outStats[6].mAvg;    return;  }  double lSumNrm         = (double)lFirstIndivFitness->getNormalizedFitness();  double lPow2SumNrm     = pow2Of<double>(lSumNrm);  float  lMaxNrm         = lFirstIndivFitness->getNormalizedFitness();  float  lMinNrm         = lFirstIndivFitness->getNormalizedFitness();  double lSumAdj         = (double)lFirstIndivFitness->getAdjustedFitness();  double lPow2SumAdj     = pow2Of<double>(lSumAdj);  float  lMaxAdj         = lFirstIndivFitness->getAdjustedFitness();  float  lMinAdj         = lFirstIndivFitness->getAdjustedFitness();  double lSumStd         = (double)lFirstIndivFitness->getStandardizedFitness();  double lPow2SumStd     = pow2Of<double>(lSumStd);  float  lMaxStd         = (double)lFirstIndivFitness->getStandardizedFitness();  float  lMinStd         = lFirstIndivFitness->getStandardizedFitness();  double lSumRaw         = lFirstIndivFitness->getRawFitness();  double lPow2SumRaw     = pow2Of<double>(lSumRaw);  float  lMaxRaw         = (double)lFirstIndivFitness->getRawFitness();  float  lMinRaw         = lFirstIndivFitness->getRawFitness();  double lSumHit         = lFirstIndivFitness->getHits();  double lPow2SumHit     = pow2Of<double>(lSumHit);  unsigned int lMaxHit   = lFirstIndivFitness->getHits();  unsigned int lMinHit   = lFirstIndivFitness->getHits();  unsigned int lMaxDepth = lGPDeme[0]->getMaxTreeDepth();  unsigned int lMinDepth = lMaxDepth;  double lSumDepth       = (double)lMaxDepth;  double lPow2SumDepth   = pow2Of<double>(lSumDepth);  unsigned int lMaxSize  = lGPDeme[0]->getTotalNodes();  unsigned int lMinSize  = lMaxSize;  double lSumSize        = (double)lMaxSize;  double lPow2SumSize    = pow2Of<double>(lSumSize);    for(unsigned int i=1; i<lGPDeme.size(); i++) {    const GP::FitnessKoza::Handle lIndivFitness =      castHandleT<GP::FitnessKoza>(lGPDeme[i]->getFitness());    lSumNrm     += (double)lIndivFitness->getNormalizedFitness();    lPow2SumNrm += pow2Of<double>((double)lIndivFitness->getNormalizedFitness());    lSumAdj     += (double)lIndivFitness->getAdjustedFitness();    lPow2SumAdj += pow2Of<double>((double)lIndivFitness->getAdjustedFitness());    lSumStd     += (double)lIndivFitness->getStandardizedFitness();    lPow2SumStd += pow2Of<double>(lIndivFitness->getStandardizedFitness());    lSumRaw     += (double)lIndivFitness->getRawFitness();    lPow2SumRaw += pow2Of<double>((double)lIndivFitness->getRawFitness());    lSumHit     += (double)lIndivFitness->getHits();    lPow2SumHit += pow2Of<double>((double)lIndivFitness->getHits());    if(lIndivFitness->getNormalizedFitness() > lMaxNrm) {      lMaxNrm = lIndivFitness->getNormalizedFitness();      lMaxAdj = lIndivFitness->getAdjustedFitness();      lMaxStd = lIndivFitness->getStandardizedFitness();      lMaxRaw = lIndivFitness->getRawFitness();      lMaxHit = lIndivFitness->getHits();    }    if(lIndivFitness->getNormalizedFitness() < lMinNrm) {      lMinNrm = lIndivFitness->getNormalizedFitness();      lMinAdj = lIndivFitness->getAdjustedFitness();      lMinStd = lIndivFitness->getStandardizedFitness();      lMinRaw = lIndivFitness->getRawFitness();      lMinHit = lIndivFitness->getHits();    }    unsigned int lTmpDepth = lGPDeme[i]->getMaxTreeDepth();    lSumDepth     += (double)lTmpDepth;    lPow2SumDepth += pow2Of<double>((double)lTmpDepth);    lMaxDepth     =  maxOf(lMaxDepth, lTmpDepth);    lMinDepth     =  minOf(lMinDepth, lTmpDepth);    unsigned int lTmpSize = lGPDeme[i]->getTotalNodes();    lSumSize     += (double)lTmpSize;    lPow2SumSize += pow2Of<double>((double)lTmpSize);    lMaxSize     =  maxOf(lMaxSize, lTmpSize);    lMinSize     =  minOf(lMinSize, lTmpSize);  }  float lNrmAverage  = (float)(lSumNrm / lGPDeme.size());  float lNrmStdError =    (float)(lPow2SumNrm - (pow2Of<double>(lSumNrm) / lGPDeme.size())) / (lGPDeme.size() - 1);  lNrmStdError       = sqrt(lNrmStdError);  float lAdjAverage  = (float)(lSumAdj / lGPDeme.size());  float lAdjStdError =    (float)(lPow2SumAdj - (pow2Of<double>(lSumAdj) / lGPDeme.size())) / (lGPDeme.size() - 1);  lAdjStdError       = sqrt(lAdjStdError);  float lStdAverage  = (float)(lSumStd / lGPDeme.size());  float lStdStdError =    (float)(lPow2SumStd - (pow2Of<double>(lSumStd) / lGPDeme.size())) / (lGPDeme.size() - 1);  lStdStdError       = sqrt(lStdStdError);  float lRawAverage  = (float)(lSumRaw / lGPDeme.size());  float lRawStdError =    (float)(lPow2SumRaw - (pow2Of<double>(lSumRaw) / lGPDeme.size())) / (lGPDeme.size() - 1);  lRawStdError       = sqrt(lRawStdError);  float lHitAverage  = (float)(lSumHit / lGPDeme.size());  float lHitStdError =    (float)(lPow2SumHit - (pow2Of<double>(lSumHit) / lGPDeme.size())) / (lGPDeme.size() - 1);  lHitStdError       = sqrt(lHitStdError);  float lDepthAverage  = (float)(lSumDepth / lGPDeme.size());  float lDepthStdError =    (float)(lPow2SumDepth - (pow2Of<double>(lSumDepth) / lGPDeme.size())) / (lGPDeme.size() - 1);  lDepthStdError       = sqrt(lDepthStdError);  float lSizeAverage  = (float)(lSumSize / lGPDeme.size());  float lSizeStdError =    (float)(lPow2SumSize - (pow2Of<double>(lSumSize) / lGPDeme.size())) / (lGPDeme.size() - 1);  lSizeStdError       = sqrt(lSizeStdError);  outStats.setGenerationValues(string("deme")+uint2str(ioContext.getDemeIndex()+1),                               ioContext.getGeneration(), ioDeme.size(), true);  outStats.resize(7);  outStats[0].mId = "normalized";  outStats[0].mAvg = lNrmAverage;  outStats[0].mStd = lNrmStdError;  outStats[0].mMax = lMaxNrm;  outStats[0].mMin = lMinNrm;  outStats[1].mId = "adjusted";  outStats[1].mAvg = lAdjAverage;  outStats[1].mStd = lAdjStdError;  outStats[1].mMax = lMaxAdj;  outStats[1].mMin = lMinAdj;  outStats[2].mId = "standardized";  outStats[2].mAvg = lStdAverage;  outStats[2].mStd = lStdStdError;  outStats[2].mMax = lMaxStd;  outStats[2].mMin = lMinStd;  outStats[3].mId = "raw";  outStats[3].mAvg = lRawAverage;  outStats[3].mStd = lRawStdError;  outStats[3].mMax = lMaxRaw;  outStats[3].mMin = lMinRaw;  outStats[4].mId = "hits";  outStats[4].mAvg = lHitAverage;  outStats[4].mStd = lHitStdError;  outStats[4].mMax = (float)lMaxHit;  outStats[4].mMin = (float)lMinHit;  outStats[5].mId = "treedepth";  outStats[5].mAvg = lDepthAverage;  outStats[5].mStd = lDepthStdError;  outStats[5].mMax = (float)lMaxDepth;  outStats[5].mMin = (float)lMinDepth;  outStats[6].mId = "treesize";  outStats[6].mAvg = lSizeAverage;  outStats[6].mStd = lSizeStdError;  outStats[6].mMax = (float)lMaxSize;  outStats[6].mMin = (float)lMinSize;  Beagle_StackTraceEndM("void GP::StatsCalcFitnessKozaOp::calculateStatsDeme(Beagle::Stats& outStats, Beagle::Deme& ioDeme, Beagle::Context& ioContext) const");}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -