⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 crossoverconstrainedop.cpp

📁 非常好的进化算法EC 实现平台 可以实现多种算法 GA GP
💻 CPP
📖 第 1 页 / 共 2 页
字号:
/* *  Open BEAGLE *  Copyright (C) 2001-2005 by Christian Gagne and Marc Parizeau * *  This library is free software; you can redistribute it and/or *  modify it under the terms of the GNU Lesser General Public *  License as published by the Free Software Foundation; either *  version 2.1 of the License, or (at your option) any later version. * *  This library is distributed in the hope that it will be useful, *  but WITHOUT ANY WARRANTY; without even the implied warranty of *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU *  Lesser General Public License for more details. * *  You should have received a copy of the GNU Lesser General Public *  License along with this library; if not, write to the Free Software *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *  Contact: *  Laboratoire de Vision et Systemes Numeriques *  Departement de genie electrique et de genie informatique *  Universite Laval, Quebec, Canada, G1K 7P4 *  http://vision.gel.ulaval.ca * *//*! *  \file   beagle/GP/src/CrossoverConstrainedOp.cpp *  \brief  Source code of class GP::CrossoverConstrainedOp. *  \author Christian Gagne *  \author Marc Parizeau *  $Revision: 1.12 $ *  $Date: 2005/10/04 16:25:10 $ */#include "beagle/GP.hpp"#include <algorithm>#include <string>using namespace Beagle;/*! *  \brief Construct a GP constrained tree crossover operator. *  \param inMatingPbName Individual mating probability parameter name used in register. *  \param inDistribPbName Distribution probability parameter name used in register. *  \param inName Name of the operator. */GP::CrossoverConstrainedOp::CrossoverConstrainedOp(Beagle::string inMatingPbName,                                                   Beagle::string inDistribPbName,                                                   Beagle::string inName) :  Beagle::GP::CrossoverOp(inMatingPbName, inDistribPbName, inName){ }/*! *  \brief Build a roulette of nodes that can be selected following the constraints penalties. *  \param ioRoulette Roulette of nodes that can be selected following the constraints given. *  \param inSelectABranch True if node to select must be a branch, false if it must a leaf. *  \param inMaxSubTreeDepth Maximum sub tree depth allowed of the node to be selected. *  \param inMaxSubTreeSize Maximum sub tree size allowed of the node to be selected. *  \param inActualIndex Index in actual tree of the node processed. *  \param inTree Tree processed. *  \param ioContext Evolutionary context. *  \return Max depth of subtree processed. */unsigned int GP::CrossoverConstrainedOp::buildRoulette(                                       RouletteT< std::pair<unsigned int,unsigned int> >& ioRoulette,                                       bool inSelectABranch,                                       unsigned int inMaxSubTreeDepth,                                       unsigned int inMaxSubTreeSize,                                       unsigned int inActualIndex,                                       GP::Tree& inTree,                                       GP::Context& ioContext) const{  Beagle_StackTraceBeginM();  const unsigned int lNbArgs = inTree[inActualIndex].mPrimitive->getNumberArguments();  const unsigned int lSubTreeSize = inTree[inActualIndex].mSubTreeSize;  const bool lGoodArity = ((inTree.size()==1) || ((lNbArgs==0) != inSelectABranch));  ioContext.pushCallStack(inActualIndex);  unsigned int lChildIndex = inActualIndex+1;  unsigned int lMaxDepthDown = 0;  for(unsigned int i=0; i<lNbArgs; ++i) {    unsigned int lChildDepth = buildRoulette(ioRoulette,                                             inSelectABranch,                                             inMaxSubTreeDepth,                                             inMaxSubTreeSize,                                             lChildIndex,                                             inTree,                                             ioContext);    lChildIndex += inTree[lChildIndex].mSubTreeSize;    if(lChildDepth > lMaxDepthDown) lMaxDepthDown = lChildDepth;  }  ++lMaxDepthDown;  const unsigned int lMaxDepthUp = ioContext.getCallStackSize();  ioContext.popCallStack();  if(lGoodArity && (lSubTreeSize<=inMaxSubTreeSize) &&     (lMaxDepthDown<=inMaxSubTreeDepth) && (lMaxDepthUp<=inMaxSubTreeDepth)) {    std::pair<unsigned int,unsigned int> lPair(ioContext.getGenotypeIndex(), inActualIndex);    ioRoulette.insert(lPair, 1.0);  }  return lMaxDepthDown;  Beagle_StackTraceEndM("unsigned int GP::CrossoverConstrainedOp::buildRoulette(RouletteT< std::pair<unsigned int,unsigned int> >& ioRoulette, bool inSelectABranch, unsigned int inMaxSubTreeDepth, unsigned int inMaxSubTreeSize, unsigned int inActualIndex, GP::Tree& inTree, GP::Context& ioContext) const");}#ifdef BEAGLE_HAVE_RTTI/*! *  \brief Build a roulette of nodes that can be selected following the constraints penalties. *  \param ioRoulette Roulette of nodes that can be selected following the constraints given. *  \param inSelectABranch True if node to select must be a branch, false if it must a leaf. *  \param inNodeReturnType Desired return type for the nodes to be selected. *  \param inMaxSubTreeDepth Maximum sub tree depth allowed of the node to be selected. *  \param inMaxSubTreeSize Maximum sub tree size allowed of the node to be selected. *  \param inActualIndex Index in actual tree of the node processed. *  \param inTree Tree processed. *  \param ioContext Evolutionary context. *  \return Max depth of subtree processed. */unsigned int GP::CrossoverConstrainedOp::buildRouletteWithType(                                       RouletteT< std::pair<unsigned int,unsigned int> >& ioRoulette,                                       bool inSelectABranch,                                       const std::type_info* inNodeReturnType,                                       unsigned int inMaxSubTreeDepth,                                       unsigned int inMaxSubTreeSize,                                       unsigned int inActualIndex,                                       GP::Tree& inTree,                                       GP::Context& ioContext) const{  Beagle_StackTraceBeginM();  const unsigned int lNbArgs = inTree[inActualIndex].mPrimitive->getNumberArguments();  const unsigned int lSubTreeSize = inTree[inActualIndex].mSubTreeSize;  const bool lGoodArity = ((inTree.size()==1) || ((lNbArgs==0) != inSelectABranch));  ioContext.pushCallStack(inActualIndex);  const std::type_info* lNodeType = inTree[inActualIndex].mPrimitive->getReturnType(ioContext);  const bool lCompatibleTyping = ((inNodeReturnType==NULL) || (lNodeType==NULL) ||                                  (inNodeReturnType==lNodeType));  unsigned int lChildIndex = inActualIndex+1;  unsigned int lMaxDepthDown = 0;  for(unsigned int i=0; i<lNbArgs; ++i) {    unsigned int lChildDepth = buildRouletteWithType(ioRoulette,                                                     inSelectABranch,                                                     inNodeReturnType,                                                     inMaxSubTreeDepth,                                                     inMaxSubTreeSize,                                                     lChildIndex,                                                     inTree,                                                     ioContext);    lChildIndex += inTree[lChildIndex].mSubTreeSize;    if(lChildDepth > lMaxDepthDown) lMaxDepthDown = lChildDepth;  }  ++lMaxDepthDown;  const unsigned int lMaxDepthUp = ioContext.getCallStackSize();  ioContext.popCallStack();  if(lGoodArity && lCompatibleTyping && (lSubTreeSize<=inMaxSubTreeSize) &&     (lMaxDepthDown<=inMaxSubTreeDepth) && (lMaxDepthUp<=inMaxSubTreeDepth)) {    std::pair<unsigned int,unsigned int> lPair(ioContext.getGenotypeIndex(), inActualIndex);    ioRoulette.insert(lPair, 1.0);  }  return lMaxDepthDown;  Beagle_StackTraceEndM("unsigned int GP::CrossoverConstrainedOp::buildRouletteWithType(RouletteT< std::pair<unsigned int,unsigned int> >& ioRoulette, bool inSelectABranch, const std::type_info* inNodeReturnType, unsigned int inMaxSubTreeDepth, unsigned int inMaxSubTreeSize, unsigned int inActualIndex, GP::Tree& inTree, GP::Context& ioContext) const");}#endif // BEAGLE_HAVE_RTTI/*! *  \brief Mate two GP individuals for a constrained tree crossover. *  \param ioIndiv1   First individual to mate. *  \param ioContext1 Evolutionary context of the first individual. *  \param ioIndiv2   Second individual to mate. *  \param ioContext2 Evolutionary context of the second individual. *  \return True if the individuals are effectively mated, false if not. */bool GP::CrossoverConstrainedOp::mate(Beagle::Individual& ioIndiv1, Beagle::Context& ioContext1,                                      Beagle::Individual& ioIndiv2, Beagle::Context& ioContext2){  Beagle_StackTraceBeginM();  // Initial parameters checks  Beagle_AssertM(ioIndiv1.size() > 0);  //Beagle_AssertM(ioIndiv1.size() == ioIndiv2.size());  Beagle_ValidateParameterM(mNumberAttempts->getWrappedValue()>0,"gp.try",">0");  // Cast method arguments.  GP::Individual& lIndiv1   = castObjectT<GP::Individual&>(ioIndiv1);  GP::Individual& lIndiv2   = castObjectT<GP::Individual&>(ioIndiv2);  GP::Context&    lContext1 = castObjectT<GP::Context&>(ioContext1);  GP::Context&    lContext2 = castObjectT<GP::Context&>(ioContext2);  // Get parameters in local values, with the total number of nodes of an individual.  bool             lMatingDone     = false;  float            lDistrProba     = mDistributionProba->getWrappedValue();  unsigned int     lMaxTreeDepth   = mMaxTreeDepth->getWrappedValue();  GP::Tree::Handle lOldTreeHandle1 = lContext1.getGenotypeHandle();  unsigned int     lOldTreeIndex1  = lContext1.getGenotypeIndex();  GP::Tree::Handle lOldTreeHandle2 = lContext2.getGenotypeHandle();  unsigned int     lOldTreeIndex2  = lContext2.getGenotypeIndex();  unsigned int     lSizeIndiv1     = 0;  for(unsigned int i=0; i<lIndiv1.size(); i++) lSizeIndiv1 += lIndiv1[i]->size();  Beagle_LogDebugM(      ioContext1.getSystem().getLogger(),    "crossover", "Beagle::GP::CrossoverConstrainedOp",    string("First individual to mate (before constrained GP crossover): ")+    lIndiv1.serialize()  );  Beagle_LogDebugM(    ioContext1.getSystem().getLogger(),    "crossover", "Beagle::GP::CrossoverConstrainedOp",    string("Second individual to mate (before constrained GP crossover): ")+    lIndiv2.serialize()  );  // Crossover loop. Try the given number of attempts to mate two individuals.  for(unsigned int lAttempt=0; lAttempt < mNumberAttempts->getWrappedValue(); ++lAttempt) {    // Choose a node in all the individual node.    unsigned int lChoosenNode1 =      lContext1.getSystem().getRandomizer().rollInteger(0, lSizeIndiv1-1);    // Get the tree in which the choosen node is. Change the global node index to the tree's index.    unsigned int lChoosenTree1 = 0;    for(; lChoosenTree1<lIndiv1.size(); lChoosenTree1++) {      if(lChoosenNode1 < lIndiv1[lChoosenTree1]->size()) break;      Beagle_AssertM(lChoosenNode1 >= lIndiv1[lChoosenTree1]->size());      lChoosenNode1 -= lIndiv1[lChoosenTree1]->size();    }    Beagle_AssertM(lChoosenTree1 < lIndiv1.size());    // Choose a type of node (branch or leaf) following the distribution probability and change the    // node for another node of the same tree if the types mismatch.    GP::Tree& lTree1 = *lIndiv1[lChoosenTree1];    const unsigned int lPrimitiveSetIndex1 = lTree1.getPrimitiveSetIndex();    if(lTree1.size() > 1) {      bool lTypeNode1 =

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -