📄 trainsetevalop.cpp
字号:
/* * Open BEAGLE * Copyright (C) 2001-2005 by Christian Gagne and Marc Parizeau * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * Contact: * Laboratoire de Vision et Systemes Numeriques * Departement de genie electrique et de genie informatique * Universite Laval, Quebec, Canada, G1K 7P4 * http://vision.gel.ulaval.ca * *//*! * \file TrainSetEvalOp.cpp * \brief Implementation of the class TrainSetEvalOp. * \author Jiachuan Wang <jiacwang@ecs.umass.edu> * \author Christian Gagne <cgagne@gmail.com> * $Revision: 1.9 $ * $Date: 2005/10/04 09:32:53 $ */#include "beagle/Coev.hpp"#include "CoSymEvalOp.hpp"#include "TrainSetEvalOp.hpp"#include "TrainSetThread.hpp"#include "SymGPEvalOp.hpp"#include "SymGPThread.hpp"#include <cmath>#include <cstdlib>#include <iostream>#include <stdexcept>#include <vector>#include <numeric>using namespace Beagle;/*! * \brief Construct the training set individual evaluation operator for the * co-evolutionary symbolic regression problem. */TrainSetEvalOp::TrainSetEvalOp() : CoSymEvalOp("TrainSetEvalOp"){ }/*! * \brief Make evaluation sets to evaluate fitness on TrainSet. * \param ioIndivBag Bag of individuals to use for evaluation. * \param ioContext Evaluationary context. */void TrainSetEvalOp::makeSets(Individual::Bag& ioIndivBag, Context::Handle ioContext){ // If last generation best individual is NULL handle, choose a random individual. if(mLastGenBestIndividual == NULL) { unsigned int lRandomIndex = ioContext->getSystem().getRandomizer().rollInteger(0, ioContext->getDeme().size()-1); Individual::Handle lIndivToCopy = ioContext->getDeme()[lRandomIndex]; Individual::Alloc::Handle lIndivAlloc = ioContext->getDeme().getTypeAlloc(); mLastGenBestIndividual = castHandleT<Individual>(lIndivAlloc->cloneData(*lIndivToCopy)); } // Eval set for best training set Individual::Bag lBestTrainSetIndiv; lBestTrainSetIndiv.push_back(mLastGenBestIndividual); EvalSet lBestTrainEvalSet(lBestTrainSetIndiv, ioContext, 3); addSet(lBestTrainEvalSet, false); // Eval set for training sets EvalSet lTrainEvalSet(ioIndivBag, ioContext, 2); addSet(lTrainEvalSet, true); // Get a copy of the best individual for next generation unsigned int lBestIndivIndex = 0; float lBestIndivIndexFits = castHandleT<FitnessSimple>(ioContext->getDeme()[0]->getFitness())->getValue(); for(unsigned int i=1; i<ioContext->getDeme().size(); ++i) { float lFitness = castHandleT<FitnessSimple>(ioContext->getDeme()[i]->getFitness())->getValue(); if(lFitness > lBestIndivIndexFits) { lBestIndivIndexFits = lFitness; lBestIndivIndex = i; } } Individual::Handle lIndivToCopy = ioContext->getDeme()[lBestIndivIndex]; Individual::Alloc::Handle lIndivAlloc = ioContext->getDeme().getTypeAlloc(); mLastGenBestIndividual = castHandleT<Individual>(lIndivAlloc->cloneData(*lIndivToCopy));}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -