⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 symbregevalop.cpp

📁 非常好的进化算法EC 实现平台 可以实现多种算法 GA GP
💻 CPP
字号:
/* *  Open BEAGLE *  Copyright (C) 2001-2005 by Christian Gagne and Marc Parizeau * *  This library is free software; you can redistribute it and/or *  modify it under the terms of the GNU Lesser General Public *  License as published by the Free Software Foundation; either *  version 2.1 of the License, or (at your option) any later version. * *  This library is distributed in the hope that it will be useful, *  but WITHOUT ANY WARRANTY; without even the implied warranty of *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU *  Lesser General Public License for more details. * *  You should have received a copy of the GNU Lesser General Public *  License along with this library; if not, write to the Free Software *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *  Contact: *  Laboratoire de Vision et Systemes Numeriques *  Departement de genie electrique et de genie informatique *  Universite Laval, Quebec, Canada, G1K 7P4 *  http://vision.gel.ulaval.ca * *//*! *  \file   SymbRegEvalOp.cpp *  \brief  Implementation of the class SymbRegEvalOp. *  \author Christian Gagne *  \author Marc Parizeau *  $Revision: 1.9 $ *  $Date: 2005/10/04 09:32:56 $ */#include "beagle/GP.hpp"#include "SymbRegEvalOp.hpp"#include <cmath>using namespace Beagle;/*! *  \brief Construct a new symbolic regression evaluation operator. */SymbRegEvalOp::SymbRegEvalOp() :  GP::EvaluationOp("SymbRegEvalOp"),  mX(0),  mY(0){ }/*! *  \brief Evaluate the individual fitness for the symbolic regression problem. *  \param inIndividual Individual to evaluate. *  \param ioContext Evolutionary context. *  \return Handle to the fitness measure, */Fitness::Handle SymbRegEvalOp::evaluate(GP::Individual& inIndividual, GP::Context& ioContext){   double lSquareError = 0.0;  for(unsigned int i=0; i<mX.size(); i++) {    setValue("X", mX[i], ioContext);    Double lResult;    inIndividual.run(lResult, ioContext);    double lError = mY[i]-lResult;    lSquareError += (lError*lError);  }  double lMSE  = lSquareError / mX.size();  double lRMSE = sqrt(lMSE);  double lFitness = (1.0 / (lRMSE + 1.0));  return new FitnessSimple(lFitness);}/*! * \brief Post-initialize the operator by sampling the function to regress. * \param ioSystem System to use to sample. */void SymbRegEvalOp::postInit(System& ioSystem){  GP::EvaluationOp::postInit(ioSystem);    for(unsigned int i=0; i<20; i++) {    mX.push_back(ioSystem.getRandomizer().rollUniform(-1.0,1.0));    mY.push_back(mX[i]*(mX[i]*(mX[i]*(mX[i]+1.0)+1.0)+1.0));  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -