📄 symbregevalop.cpp
字号:
/* * Open BEAGLE * Copyright (C) 2001-2005 by Christian Gagne and Marc Parizeau * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * Contact: * Laboratoire de Vision et Systemes Numeriques * Departement de genie electrique et de genie informatique * Universite Laval, Quebec, Canada, G1K 7P4 * http://vision.gel.ulaval.ca * *//*! * \file SymbRegEvalOp.cpp * \brief Implementation of the class SymbRegEvalOp. * \author Christian Gagne * \author Marc Parizeau * $Revision: 1.9 $ * $Date: 2005/10/04 09:32:56 $ */#include "beagle/GP.hpp"#include "SymbRegEvalOp.hpp"#include <cmath>using namespace Beagle;/*! * \brief Construct a new symbolic regression evaluation operator. */SymbRegEvalOp::SymbRegEvalOp() : GP::EvaluationOp("SymbRegEvalOp"), mX(0), mY(0){ }/*! * \brief Evaluate the individual fitness for the symbolic regression problem. * \param inIndividual Individual to evaluate. * \param ioContext Evolutionary context. * \return Handle to the fitness measure, */Fitness::Handle SymbRegEvalOp::evaluate(GP::Individual& inIndividual, GP::Context& ioContext){ double lSquareError = 0.0; for(unsigned int i=0; i<mX.size(); i++) { setValue("X", mX[i], ioContext); Double lResult; inIndividual.run(lResult, ioContext); double lError = mY[i]-lResult; lSquareError += (lError*lError); } double lMSE = lSquareError / mX.size(); double lRMSE = sqrt(lMSE); double lFitness = (1.0 / (lRMSE + 1.0)); return new FitnessSimple(lFitness);}/*! * \brief Post-initialize the operator by sampling the function to regress. * \param ioSystem System to use to sample. */void SymbRegEvalOp::postInit(System& ioSystem){ GP::EvaluationOp::postInit(ioSystem); for(unsigned int i=0; i<20; i++) { mX.push_back(ioSystem.getRandomizer().rollUniform(-1.0,1.0)); mY.push_back(mX[i]*(mX[i]*(mX[i]*(mX[i]+1.0)+1.0)+1.0)); }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -