⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sparsity.m

📁 This demonstration shows that reordering the rows and columns of a sparse matrix S can affect the ti
💻 M
字号:

% This spy plot shows a SPARSE symmetric positive definite matrix derived from 
% a portion of the Harwell-Boeing test matrix "west0479", a matrix describing 
% connections in a model of a diffraction column in a chemical plant.

load('west0479.mat')
A = west0479;
S = A * A' + speye(size(A));
pct = 100 / prod(size(A));

spy(S), title('A Sparse Symmetric Matrix')
nz = nnz(S);
xlabel(sprintf('nonzeros=%d (%.3f%%)',nz,nz*pct));


%% Computing the Cholesky factor
% Now we compute the Cholesky factor L, where S=L*L'. Notice that L contains
% MANY more nonzero elements than the unfactored S, because the computation of
% the Cholesky factorization creates "fill-in" nonzeros.  This slows down the
% algorithm and increases storage cost.

tic, L = chol(S)'; t(1) = toc;
spy(L), title('Cholesky decomposition of S')
nc(1) = nnz(L);
xlabel(sprintf('nonzeros=%d (%.2f%%)   time=%.2f sec',nc(1),nc(1)*pct,t(1)));


%% Reordering to speed up the calculation
% By reordering the rows and columns of a matrix, it may be possible to reduce
% the amount of fill-in created by factorization, thereby reducing time and 
% storage cost.
% 
% We will now try three different orderings supported by MATLAB.
%
%   * reverse Cuthill-McKee
%   * column count
%   * minimum degree


%% Using the reverse Cuthill-McKee
% The SYMRCM command uses the reverse Cuthill-McKee reordering algorithm to 
% move all nonzero elements closer to the diagonal, reducing the "bandwidth" of
% the original matrix.

p = symrcm(S);
spy(S(p,p)), title('S(p,p) after Cuthill-McKee ordering')
nz = nnz(S);
xlabel(sprintf('nonzeros=%d (%.3f%%)',nz,nz*pct));

%%
% The fill-in produced by Cholesky factorization is confined to the band, so 
% that factorization of the reordered matrix takes less time and less storage.

tic, L = chol(S(p,p))'; t(2) = toc;
spy(L), title('chol(S(p,p)) after Cuthill-McKee ordering')
nc(2) = nnz(L);
xlabel(sprintf('nonzeros=%d (%.2f%%)   time=%.2f sec', nc(2),nc(2)*pct,t(2)));


%% Using column count
% The COLPERM command uses the column count reordering algorithm to move rows
% and columns with higher nonzero count towards the end of the matrix.

q = colperm(S);
spy(S(q,q)), title('S(q,q) after column count ordering')
nz = nnz(S);
xlabel(sprintf('nonzeros=%d (%.3f%%)',nz,nz*pct));

%%
% For this example, the column count ordering happens to reduce the time and
% storage for Cholesky factorization, but this behavior cannot be expected in
% general.

tic, L = chol(S(q,q))'; t(3) = toc;
spy(L), title('chol(S(q,q)) after column count ordering')
nc(3) = nnz(L);
xlabel(sprintf('nonzeros=%d (%.2f%%)   time=%.2f sec',nc(3),nc(3)*pct,t(3)));


%% Using minimum degree
% The SYMAMD command uses the approximate minimum degree algorithm (a powerful 
% graph-theoretic technique) to produce large blocks of zeros in the matrix.

r = symamd(S);
spy(S(r,r)), title('S(r,r) after minimum degree ordering')
nz = nnz(S);
xlabel(sprintf('nonzeros=%d (%.3f%%)',nz,nz*pct));

%%
% The blocks of zeros produced by the minimum degree algorithm are preserved
% during the Cholesky factorization.  This can significantly reduce time and
% storage costs.

tic, L = chol(S(r,r))'; t(4) = toc;
spy(L), title('chol(S(r,r)) after minimum degree ordering')
nc(4) = nnz(L);
xlabel(sprintf('nonzeros=%d (%.2f%%)   time=%.2f sec',nc(4),nc(4)*pct,t(4)));


%% Summarizing the results

labels={'original','Cuthill-McKee','column count','min degree'};

subplot(2,1,1)
bar(nc*pct)
title('Nonzeros after Cholesky factorization')
ylabel('Percent');
set(gca,'xticklabel',labels)

subplot(2,1,2)
bar(t)
title('Time to complete Cholesky factorization')
ylabel('Seconds');
set(gca,'xticklabel',labels)


displayEndOfDemoMessage(mfilename)

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -