📄 sparsity.m
字号:
% This spy plot shows a SPARSE symmetric positive definite matrix derived from
% a portion of the Harwell-Boeing test matrix "west0479", a matrix describing
% connections in a model of a diffraction column in a chemical plant.
load('west0479.mat')
A = west0479;
S = A * A' + speye(size(A));
pct = 100 / prod(size(A));
spy(S), title('A Sparse Symmetric Matrix')
nz = nnz(S);
xlabel(sprintf('nonzeros=%d (%.3f%%)',nz,nz*pct));
%% Computing the Cholesky factor
% Now we compute the Cholesky factor L, where S=L*L'. Notice that L contains
% MANY more nonzero elements than the unfactored S, because the computation of
% the Cholesky factorization creates "fill-in" nonzeros. This slows down the
% algorithm and increases storage cost.
tic, L = chol(S)'; t(1) = toc;
spy(L), title('Cholesky decomposition of S')
nc(1) = nnz(L);
xlabel(sprintf('nonzeros=%d (%.2f%%) time=%.2f sec',nc(1),nc(1)*pct,t(1)));
%% Reordering to speed up the calculation
% By reordering the rows and columns of a matrix, it may be possible to reduce
% the amount of fill-in created by factorization, thereby reducing time and
% storage cost.
%
% We will now try three different orderings supported by MATLAB.
%
% * reverse Cuthill-McKee
% * column count
% * minimum degree
%% Using the reverse Cuthill-McKee
% The SYMRCM command uses the reverse Cuthill-McKee reordering algorithm to
% move all nonzero elements closer to the diagonal, reducing the "bandwidth" of
% the original matrix.
p = symrcm(S);
spy(S(p,p)), title('S(p,p) after Cuthill-McKee ordering')
nz = nnz(S);
xlabel(sprintf('nonzeros=%d (%.3f%%)',nz,nz*pct));
%%
% The fill-in produced by Cholesky factorization is confined to the band, so
% that factorization of the reordered matrix takes less time and less storage.
tic, L = chol(S(p,p))'; t(2) = toc;
spy(L), title('chol(S(p,p)) after Cuthill-McKee ordering')
nc(2) = nnz(L);
xlabel(sprintf('nonzeros=%d (%.2f%%) time=%.2f sec', nc(2),nc(2)*pct,t(2)));
%% Using column count
% The COLPERM command uses the column count reordering algorithm to move rows
% and columns with higher nonzero count towards the end of the matrix.
q = colperm(S);
spy(S(q,q)), title('S(q,q) after column count ordering')
nz = nnz(S);
xlabel(sprintf('nonzeros=%d (%.3f%%)',nz,nz*pct));
%%
% For this example, the column count ordering happens to reduce the time and
% storage for Cholesky factorization, but this behavior cannot be expected in
% general.
tic, L = chol(S(q,q))'; t(3) = toc;
spy(L), title('chol(S(q,q)) after column count ordering')
nc(3) = nnz(L);
xlabel(sprintf('nonzeros=%d (%.2f%%) time=%.2f sec',nc(3),nc(3)*pct,t(3)));
%% Using minimum degree
% The SYMAMD command uses the approximate minimum degree algorithm (a powerful
% graph-theoretic technique) to produce large blocks of zeros in the matrix.
r = symamd(S);
spy(S(r,r)), title('S(r,r) after minimum degree ordering')
nz = nnz(S);
xlabel(sprintf('nonzeros=%d (%.3f%%)',nz,nz*pct));
%%
% The blocks of zeros produced by the minimum degree algorithm are preserved
% during the Cholesky factorization. This can significantly reduce time and
% storage costs.
tic, L = chol(S(r,r))'; t(4) = toc;
spy(L), title('chol(S(r,r)) after minimum degree ordering')
nc(4) = nnz(L);
xlabel(sprintf('nonzeros=%d (%.2f%%) time=%.2f sec',nc(4),nc(4)*pct,t(4)));
%% Summarizing the results
labels={'original','Cuthill-McKee','column count','min degree'};
subplot(2,1,1)
bar(nc*pct)
title('Nonzeros after Cholesky factorization')
ylabel('Percent');
set(gca,'xticklabel',labels)
subplot(2,1,2)
bar(t)
title('Time to complete Cholesky factorization')
ylabel('Seconds');
set(gca,'xticklabel',labels)
displayEndOfDemoMessage(mfilename)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -