⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 som.jsommath.html

📁 Java方面的数值算法
💻 HTML
📖 第 1 页 / 共 2 页
字号:
</TR>
</TABLE>
&nbsp;
<P>

<!-- ========= CONSTRUCTOR DETAIL ======== -->

<A NAME="constructor_detail"><!-- --></A>
<TABLE BORDER="1" WIDTH="100%" CELLPADDING="3" CELLSPACING="0" SUMMARY="">
<TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor">
<TH ALIGN="left" COLSPAN="1"><FONT SIZE="+2">
<B>Constructor Detail</B></FONT></TH>
</TR>
</TABLE>

<A NAME="SOM.JSomMath(int)"><!-- --></A><H3>
SOM.JSomMath</H3>
<PRE>
public <B>SOM.JSomMath</B>(int&nbsp;vectorSize)</PRE>
<DL>
<DD>Constructor.
<P>
<DL>
<DT><B>Parameters:</B><DD><CODE>int</CODE> - vectorSize - Size of a weight/input vector.</DL>
</DL>

<!-- ============ METHOD DETAIL ========== -->

<A NAME="method_detail"><!-- --></A>
<TABLE BORDER="1" WIDTH="100%" CELLPADDING="3" CELLSPACING="0" SUMMARY="">
<TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor">
<TH ALIGN="left" COLSPAN="1"><FONT SIZE="+2">
<B>Method Detail</B></FONT></TH>
</TR>
</TABLE>

<A NAME="expLRP(int, double, int)"><!-- --></A><H3>
expLRP</H3>
<PRE>
public double <B>expLRP</B>(int&nbsp;n,
                     double&nbsp;a,
                     int&nbsp;A)</PRE>
<DL>
<DD>Calculates the exponential learning-rate parameter value.
<P>
<DD><DL>
<DT><B>Parameters:</B><DD><CODE>int</CODE> - n - current step (time).<DD><CODE>double</CODE> - a - initial value for learning-rate parameter (should be            close to 0.1).<DD><CODE>int</CODE> - A - time constant (usually the number of iterations in the            learning process).
<DT><B>Returns:</B><DD>double - exponential learning-rate parameter value.</DL>
</DD>
</DL>
<HR>

<A NAME="linLRP(int, double, int)"><!-- --></A><H3>
linLRP</H3>
<PRE>
public double <B>linLRP</B>(int&nbsp;n,
                     double&nbsp;a,
                     int&nbsp;A)</PRE>
<DL>
<DD>Calculates the linear learning-rate parameter value.
<P>
<DD><DL>
<DT><B>Parameters:</B><DD><CODE>int</CODE> - n - current step (time).<DD><CODE>double</CODE> - a - initial value for learning-rate parameter (should be            close to 0.1).<DD><CODE>int</CODE> - A - another constant (usually the number of iterations in            the learning process).
<DT><B>Returns:</B><DD>double - linear learning-rate parameter value.</DL>
</DD>
</DL>
<HR>

<A NAME="invLRP(int, double, double, double)"><!-- --></A><H3>
invLRP</H3>
<PRE>
public double <B>invLRP</B>(int&nbsp;n,
                     double&nbsp;a,
                     double&nbsp;A,
                     double&nbsp;B)</PRE>
<DL>
<DD>Calculates the inverse time learning-rate parameter value.
<P>
<DD><DL>
<DT><B>Parameters:</B><DD><CODE>int</CODE> - n - current step (time).<DD><CODE>double</CODE> - a - initial value for learning-rate parameter (should be            close to 0.1).<DD><CODE>double</CODE> - A - another constant.<DD><CODE>double</CODE> - B - another constant.
<DT><B>Returns:</B><DD>double - inverse time learning-rate parameter value.</DL>
</DD>
</DL>
<HR>

<A NAME="gaussianWidth(double, int, int)"><!-- --></A><H3>
gaussianWidth</H3>
<PRE>
public double <B>gaussianWidth</B>(double&nbsp;g,
                            int&nbsp;n,
                            int&nbsp;t)</PRE>
<DL>
<DD>Calculates the gaussian neighbourhood width value.
<P>
<DD><DL>
<DT><B>Parameters:</B><DD><CODE>double</CODE> - g - initial width value of the neighbourhood.<DD><CODE>int</CODE> - n - current step (time).<DD><CODE>int</CODE> - t - time constant (usually the number of iterations in the            learning process).
<DT><B>Returns:</B><DD>double - adapted gaussian neighbourhood function value.</DL>
</DD>
</DL>
<HR>

<A NAME="bubbleAdaptation(double[], double[], double[], double[], double, double)"><!-- --></A><H3>
bubbleAdaptation</H3>
<PRE>
public double[] <B>bubbleAdaptation</B>(double[]&nbsp;x,
                                 double[]&nbsp;w,
                                 double[]&nbsp;i,
                                 double[]&nbsp;j,
                                 double&nbsp;g,
                                 double&nbsp;lrp)</PRE>
<DL>
<DD>Calculates the new adapted values for a weight vector, based on Bubble neighbourhood.
<P>
<DD><DL>
<DT><B>Parameters:</B><DD><CODE>double[]</CODE> - x - input vector.<DD><CODE>double[]</CODE> - w - weight vector.<DD><CODE>double[]</CODE> - i - winning neuron location in the lattice.<DD><CODE>double[]</CODE> - j - excited neuron location in the lattice.<DD><CODE>double</CODE> - g - adapted width value of the neighbourhood.<DD><CODE>double</CODE> - lrp - adapted learning-rate parameter value.
<DT><B>Returns:</B><DD>double[] - Returns the adapted neuron values.</DL>
</DD>
</DL>
<HR>

<A NAME="gaussianAdaptation(double[], double[], double[], double[], double, double)"><!-- --></A><H3>
gaussianAdaptation</H3>
<PRE>
public double[] <B>gaussianAdaptation</B>(double[]&nbsp;x,
                                   double[]&nbsp;w,
                                   double[]&nbsp;i,
                                   double[]&nbsp;j,
                                   double&nbsp;width,
                                   double&nbsp;lrp)</PRE>
<DL>
<DD>Calculates the new adapted values for a weight vector, based on Gaussian neighbourhood.
<P>
<DD><DL>
<DT><B>Parameters:</B><DD><CODE>double[]</CODE> - x - input vector.<DD><CODE>double[]</CODE> - w - weight vector.<DD><CODE>double[]</CODE> - i - winning neuron location in the lattice.<DD><CODE>double[]</CODE> - j - excited neuron location in the lattice.<DD><CODE>double</CODE> - width - adapted width value of the neighbourhood.<DD><CODE>double</CODE> - lrp - adapted learning-rate parameter value.
<DT><B>Returns:</B><DD>double[] - Returns the adapted neuron values.</DL>
</DD>
</DL>
<!-- ========= END OF CLASS DATA ========= -->
<HR>


<!-- ======= START OF BOTTOM NAVBAR ====== -->
<A NAME="navbar_bottom"><!-- --></A>
<A HREF="#skip-navbar_bottom" title="Skip navigation links"></A>
<TABLE BORDER="0" WIDTH="100%" CELLPADDING="1" CELLSPACING="0" SUMMARY="">
<TR>
<TD COLSPAN=2 BGCOLOR="#EEEEFF" CLASS="NavBarCell1">
<A NAME="navbar_bottom_firstrow"><!-- --></A>
<TABLE BORDER="0" CELLPADDING="0" CELLSPACING="3" SUMMARY="">
  <TR ALIGN="center" VALIGN="top">
  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../../../overview-summary.html"><FONT CLASS="NavBarFont1"><B>Overview</B></FONT></A>&nbsp;</TD>
  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="package-summary.html"><FONT CLASS="NavBarFont1"><B>Package</B></FONT></A>&nbsp;</TD>
  <TD BGCOLOR="#FFFFFF" CLASS="NavBarCell1Rev"> &nbsp;<FONT CLASS="NavBarFont1Rev"><B>Class</B></FONT>&nbsp;</TD>
  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="class-use/SOM.JSomMath.html"><FONT CLASS="NavBarFont1"><B>Use</B></FONT></A>&nbsp;</TD>
  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="package-tree.html"><FONT CLASS="NavBarFont1"><B>Tree</B></FONT></A>&nbsp;</TD>
  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../../../deprecated-list.html"><FONT CLASS="NavBarFont1"><B>Deprecated</B></FONT></A>&nbsp;</TD>
  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../../../index-all.html"><FONT CLASS="NavBarFont1"><B>Index</B></FONT></A>&nbsp;</TD>
  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../../../help-doc.html"><FONT CLASS="NavBarFont1"><B>Help</B></FONT></A>&nbsp;</TD>
  </TR>
</TABLE>
</TD>
<TD ALIGN="right" VALIGN="top" ROWSPAN=3><EM>
</EM>
</TD>
</TR>

<TR>
<TD BGCOLOR="white" CLASS="NavBarCell2"><FONT SIZE="-2">
&nbsp;<A HREF="../../../../net/sf/javaml/clustering/SOM.JSomLabeling.html" title="class in net.sf.javaml.clustering"><B>PREV CLASS</B></A>&nbsp;
&nbsp;<A HREF="../../../../net/sf/javaml/clustering/SOM.JSomTraining.html" title="class in net.sf.javaml.clustering"><B>NEXT CLASS</B></A></FONT></TD>
<TD BGCOLOR="white" CLASS="NavBarCell2"><FONT SIZE="-2">
  <A HREF="../../../../index.html?net/sf/javaml/clustering/SOM.JSomMath.html" target="_top"><B>FRAMES</B></A>  &nbsp;
&nbsp;<A HREF="SOM.JSomMath.html" target="_top"><B>NO FRAMES</B></A>  &nbsp;
&nbsp;<SCRIPT type="text/javascript">
  <!--
  if(window==top) {
    document.writeln('<A HREF="../../../../allclasses-noframe.html"><B>All Classes</B></A>');
  }
  //-->
</SCRIPT>
<NOSCRIPT>
  <A HREF="../../../../allclasses-noframe.html"><B>All Classes</B></A>
</NOSCRIPT>


</FONT></TD>
</TR>
<TR>
<TD VALIGN="top" CLASS="NavBarCell3"><FONT SIZE="-2">
  SUMMARY:&nbsp;NESTED&nbsp;|&nbsp;FIELD&nbsp;|&nbsp;<A HREF="#constructor_summary">CONSTR</A>&nbsp;|&nbsp;<A HREF="#method_summary">METHOD</A></FONT></TD>
<TD VALIGN="top" CLASS="NavBarCell3"><FONT SIZE="-2">
DETAIL:&nbsp;FIELD&nbsp;|&nbsp;<A HREF="#constructor_detail">CONSTR</A>&nbsp;|&nbsp;<A HREF="#method_detail">METHOD</A></FONT></TD>
</TR>
</TABLE>
<A NAME="skip-navbar_bottom"></A>
<!-- ======== END OF BOTTOM NAVBAR ======= -->

<HR>
			<i>Copyright &#169; 2006-2007 - Thomas Abeel - All Rights Reserved.</i>
</BODY>
</HTML>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -