⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 s_wiener_filter.m

📁 基于Matlab的地震数据处理显示和测井数据显示于处理的小程序
💻 M
字号:
function filter=s_wiener_filter(from,to,varargin)% Function computes the filter that matches (filters that match) the first% input data set to the second input data set.%% Written by: E. R.: October 2001% Last updated: August 3, 2006: bug fix%%             filter=s_wiener_filter(from,to,varargin)% INPUT% from, to    seismic data sets to be matched. %             Depending on the options used the two data sets may %             need to have the same number of traces.%             If the length of "to" + the filter length is less than the%             length of "to" a filter is computed for a number of shifts %             equal to "length ("to") - length ("from") - length('filter");%             the best-matching filter is chosen as output.% varargin    one or more cell arrays; the first element of each cell%             array is a keyword,the other elements are parameters. %             Presently, keywords are:%       'method'    defines the method/algorithm to be used to compute%              the filter. Presently,the following algorithms are available:%             'sridge'   simple ridge regression            %       'option'    specifies which type of filter to compute. Presently,%             the following options are available:%             'tracewise'  compute filters (one filter for each input/output trace pair)%                   which convert traces in the first input dataset into the%                   corresponding traces of the second seismic structure input. This%                   requires that the the two seismic structures have the same number of %                   traces (ntr1=ntr2). The number of filters output is equal to ntr1, the %                   number of traces in the input data sets.%             'dataset'  Compute a single filter that converts every trace %                   in the first input dataset into the corresponding trace%                   of the second seismic input dataset. This requires %                   that the the two seismic structures have the same number %                   of traces (ntr1=ntr2).%             'all'    Compute ntr1*ntr2 individual filters which match each%                   trace of the first input dataset to each trace %                   of the second input data set.%              No default unless "from" and "to" are one-trace datasets;%              in this case {'option','tracewise'}      %       'flength'   filter length in ms; no default.%       'window1'   window on the first input data set which should be used%             Default: {'window1',from.first,from.last}%       'window2'   window on the second input data set that should be matched             %             Default: {'window1',to.first,to.last}%       'null'      Null value to use for filter coefficients that do not exist%             Only important if there is more than one filter and if %             filters are shifted relative to one another. %             Default: {'null',0}%       'header'    As part of the filter calculation the crosscorrelation%             of the filtered first input data set, i.e. "filter*from", %             and second data set, "to", is computed. %             'header' defines the header name used to store %             these crosscorrelations for option "tracewise". To suppress %             cresting this header set {'header',[]}%             Default: {'header','param_cc'}%       'wnoise'    fraction of "white noise" to add%             Default: {'wnoise',0.01}% OUTPUT% filter      filter in form of a seismic structure. Filter has either one trace (a single %             filter matching corresponding traces), or as many traces as there are traces%             in from or to. In this case there is one filter for each pair of%             corresponding input traces. Finally there can be ntr1*ntr2 filters matching%             trace of the first input data set to each trace of the second input data set.%             In this case the first ntr2 filters match the first trace of the first input %             data set to the ntr2 traces of the second data set, the second ntr2 filters %             match the second trace of the first input data set to the second data set, etc.%      Check input dataif ~istype(from,'seismic')  |  ~istype(to,'seismic')   error(' The first two input data sets must be seismic structures.')endntr1=size(from.traces,2);ntr2=size(to.traces,2);if from.step ~= to.step   error([' The two input data sets must have the same sample interval (', ...          num2str(from.step),' differs from ',num2str(to.step),')'])end%    Set default values for input parametersparam.increment=from.step;param.flength=[];%param.method='sridge';param.null=0;param.option=[];param.stepout=[];param.scale='yes';% param.type=1;param.window1={from.first,from.last};param.window2={to.first,to.last};param.header='param_cc';param.wnoise=0.01;%       Replace defaults by actual input argumentsparam=assign_input(param,varargin);if isempty(param.option)    if size(from.traces,2) == 1  &  size(to.traces,2) == 1      param.option='tracewise';   else      error('Parameter "option" must be specified.')   endendif isempty(param.option)   error('Parameter "option" must be specified.')endif isempty(param.flength)   error(' Parameter "flength" has no default; must be specified')else   nf=round(param.flength/from.step)+1;%   nf2=round((nf+1)/2);endif strcmp(param.scale,'yes')   scaling=logical(1);else   scaling=logical(0);endta1=max([param.window1{1},from.first]);te1=min([param.window1{2},from.last]);ta2=max([param.window2{1},to.first]);te2=min([param.window2{2},to.last]);ia1=round((ta1-from.first)/from.step)+1;ie1=round((te1-from.first)/from.step)+1;ia2=round((ta2-to.first)/to.step)+1;ie2=round((te2-to.first)/to.step)+1;n1=ie1-ia1+1;n2=ie2-ia2+1;if isempty(param.stepout)   param.stepout=param.flength/10;end incr=max(1,round(param.stepout/from.step));filter.type='seismic';filter.tag='wavelet';filter.name='Filter';% 	Compute Wiener filter.switch param.option%------------------------------------------------               case 'tracewise'if ntr1 ~= ntr2   error([' The two input data sets must have the same number of traces (', ...          num2str(ntr1),' differs from ',num2str(ntr2),')'])endif n2 > n1-nf   % Number of samples of target >= number of samples of original                % data set - filter coefficients   [filt,cc_max,shifts]=mfilter_t2t(from.traces(ia1:ie1,:), ...                        to.traces(ia2:ie2,:),nf,param.wnoise,incr);   min_shift=min(shifts);   dshift=(shifts-min_shift);   max_shift=max(dshift);   if max_shift > 0  &  isnan(param.null)      filter.null=NaN;       filter.traces=NaN*ones(nf+max_shift,ntr1);   else      filter.traces=param.null*ones(nf+max_shift,ntr1);   end   for ii=1:ntr1      filter.traces(1+dshift(ii):dshift(ii)+nf,ii)=filt(:,ii);   end   else   alert(' ... not yet sufficiently tested for multi-trace filters')   nshifts=n1-nf-n2;   ia10=ia1-1;   ie10=ia10+n2+nf-2;   cc=zeros(nshifts,ntr1);   filters=zeros(nshifts,ntr1,nf);   for ii=1:nshifts      [filt,cc_max,shifts]=mfilter_t2t(from.traces((ia10:ie10)+ii,:), ...                        to.traces(ia2:ie2,:),nf,param.wnoise,incr);      filters(ii,:,:)=filt';      cc(ii,:)=cc_max;   end   [cc_max,idx]=max(cc);   idx1=idx+(0:nshifts:(ntr1-1)*nshifts);   shifts=2-idx;   filters=reshape(filters,[],nf);   filters=filters(idx1,:)';   min_shift=min(shifts);   dshift=(shifts-min_shift);   max_shift=max(dshift);   if max_shift > 0  &  isnan(param.null)      filter.null=NaN;       filter.traces=NaN*ones(nf+max_shift,ntr1);   else      filter.traces=param.null*ones(nf+max_shift,ntr1);   end   for ii=1:ntr1      filter.traces(1+dshift(ii):dshift(ii)+nf,ii)=filters(:,ii);   end endfilter.step=from.step;%filter.first=to.first-from.first-(nf-nf2-min_shift)*filter.step;%filter.first=to.first-from.first-(nf-min_shift)*filter.step;filter.first=ta2-ta1-(nf-min_shift)*filter.step;filter.last=filter.first+(nf+max_shift-1)*filter.step;if isfield(from,'headers')  filter.headers=from.headers;  filter.header_info=from.header_info;end% -----------------------------------------------               case 'dataset'if ntr1 ~= ntr2  error([' The two input data sets must have the same number of traces (', ...          num2str(ntr1),' differs from ',num2str(ntr2),')'])endif n2 >= n1-nf   [filt,cc_max,shifts]=mfilter_d2d(from.traces(ia1:ie1,:), ...                        to.traces(ia2:ie2,:),nf,param.wnoise,incr);   filter.traces=filt;else   error(' Second data set too short (< length of "from" + filter length); not yet implemented')endfilter.step=from.step;filter.first=ta2-ta1-(nf-shifts)*filter.step;filter.last=filter.first+(nf-1)*filter.step;% -----------------------------------------------               case 'all'ntr12=ntr1*ntr2;filters=zeros(nf,ntr12);cc_max=zeros(ntr12,1);shifts=zeros(ntr12,1);if n2 >= n1-nf   for ii=1:ntr1      [filt,cc_m,shift,scale]=mfilter_t2d(from.traces(ia1:ie1,ii), ...                        to.traces(ia2:ie2,:),nf,param.wnoise,incr,0);      if scaling%        filters(:,(ii-1)*ntr2+1:ii*ntr2)=filt*spdiags(scale,0, ...%            length(scale),length(scale));         filters(:,(ii-1)*ntr2+1:ii*ntr2)=mvt(filt,scale);      else         filters(:,(ii-1)*ntr2+1:ii*ntr2)=filt;      end      cc_max((ii-1)*ntr2+1:ii*ntr2)=cc_m;      shifts((ii-1)*ntr2+1:ii*ntr2)=shift;   end   min_shift=min(shifts);   dshift=(shifts-min_shift);   max_shift=max(dshift);   if max_shift > 0 & isnan(param.null)      filter.null=NaN;       filter.traces=NaN*ones(nf+max_shift,ntr1*ntr2);   else      filter.traces=param.null*ones(nf+max_shift,ntr1*ntr2);   end   for ii=1:ntr12      filter.traces(1+dshift(ii):dshift(ii)+nf,ii)=filters(:,ii);   endelse   error(' Not yet implemented')endfilter.step=from.step;% filter.first=to.first-from.first-(nf-nf2-min_shift)*filter.step;filter.first=to.first-from.first-(nf-min_shift)*filter.step;filter.last=filter.first+(nf+max_shift-1)*filter.step;cc_max=reshape(cc_max,ntr2,ntr1);% -----------------------------------------------               otherwiseerror([' Unknown option "',param.option,'"'])end		% End of switch blockfilter.units=from.units;if ~isempty(param.header) & ~strcmpi(param.option,'dataset') filter=s_header(filter,'add',param.header,cc_max(:)','n/a', ...              'Coefficient of correlation');end%    Append history fieldif isfield(from,'history') & isfield(to,'history')  filter.history=from.history;  htext=param.option;  filter=s_history(filter,'append',htext);  filter=s_history(filter,'merge',to.history);end  

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -