📄 hough.m
字号:
function [h,theta,rho]=hough(f,dtheta,dtho)
%HOUGH Hough transform.
% [H,THETA,THO] = HOUGH(F,DTHETA,DRHO) computes the Hough transform of
% the image F. DTHETA specifies the spacing (in degrees) of the Hough
% transform bins along the theta axis. DRHO specifies the spacing of the
% Hough transform bins along the rho axis. H is the Hough transform
% matrix. It is NRHO-BY-NTHETA,where NRHO =
% 2*ceil(norm(size(F))/DRHO)-1,and NTHETA = 2*ceil(90/DTHETA). Note that
% if 90/DTHETA is not an integer,the actual angle spacing will be
% 90/ceil(90/DTHETA).
%
% THETA is an NTHETA-element vector containing the angle (in degrees)
% corresponding to each column of H. RHO is an NRHO-element vector
% containing the value of rho corresponding to each row of H.
%
% [H,THETA,RHO] = HOUGH(F) computes the Hough transform using DTHETA =1
% and DRHO = 1.
if nargin <3;
drho = 1;
end
if nargin < 2;
dtheta = 1;
end
f=double(f);
[M,N]=size(f);
theta = linspace(-90,0,ceil(90/dtheta)+1);
%divide the spacing -90~0 to pieces by ceil(90/dtheta)+1 as the distance between each piece
theta = [theta - fliplr(theta(2:end - 1))]; %flip the low vector,then it is changed to be --what? why?
ntheta = length(theta);
D = sqrt((M-1)^2 + (N-1)^2);
q = ceil(D/drtho);
nrho = 2*q-1;
rho = linspace(-q*drho, q*drho, nrho);
[x,y,val] = find(f);
%return the nonzero value of the matrix f, x/y are the corresponding low and column vector seperately;val is the nonzero value vector.
x= x-1; y = y-1; %?
%initialize output.
h = zeros(nrho,length(theta));
%to avoid excessive memory usage,process 1000 nonzero pixel values at a
%time.
for k = 1:ceil(length(val)/1000)
first = (k -1)*1000 +1;
last = min(first+999,length(x));
x_matrix = repmat(x(first:last), 1,ntheta);
y_matrix = repmat(y(first:last), 1,ntheta);
val_matrix = repmat(val(first:last),1,ntheta);
theta_matrix = repmat(theta,size(x_matrix,1),1),*pi/180;
rho_matrix = x_matrix.*cos(theta_matrix) + y_matrix.*sin(theta_matrix);
slope = (nrho-1)/(rho(end)-rho(1));
rho_bin_index = round(slop*(rho_matrix - rho(1))+1);
theta_bin_index = repmat(1:ntheta, size(x_matrix,1),1);
% Take advantage of the fact that the SPARSE function, which
% construct a sparse matrix,accumulates values when input indices are
% repeated. That's the behavior we want for the Hough transform. We
% want the output to be a full (nonsparse) matrix,however,so we call
% function FULL on the output of SPARSE.
h = h + full(sparse(rho_bin_index(:),theta_bin_index(:),val_matrix(:),nrho,ntheta));
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -