⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bsvm.cpp

📁 svm的实现源码
💻 CPP
📖 第 1 页 / 共 5 页
字号:
		int i;		for(i=0;i<l;i++)		{			int this_label = (int)prob->y[i];			int j;			for(j=0;j<nr_class;j++)				if(this_label == label[j])				{					++count[j];					break;				}			index[i] = j;			if(j == nr_class)			{				if(nr_class == max_nr_class)				{					max_nr_class *= 2;					label = (int *)realloc(label,max_nr_class*sizeof(int));					count = (int *)realloc(count,max_nr_class*sizeof(int));				}				label[nr_class] = this_label;				count[nr_class] = 1;				++nr_class;			}		}		// group training data of the same class		int *start = Malloc(int,nr_class);		start[0] = 0;		for(i=1;i<nr_class;i++)			start[i] = start[i-1]+count[i-1];		svm_node **x = Malloc(svm_node *,l);				for(i=0;i<l;i++)		{			x[start[index[i]]] = prob->x[i];			++start[index[i]];		}				start[0] = 0;		for(i=1;i<nr_class;i++)			start[i] = start[i-1]+count[i-1];		// calculate weighted C		double *weighted_C = Malloc(double, nr_class);		for(i=0;i<nr_class;i++)			weighted_C[i] = param->C;		for(i=0;i<param->nr_weight;i++)		{				int j;			for(j=0;j<nr_class;j++)				if(param->weight_label[i] == label[j])					break;			if(j == nr_class)				fprintf(stderr,"warning: class label %d specified in weight is not found\n", param->weight_label[i]);			else				weighted_C[j] *= param->weight[i];		}		bool *nonzero = Malloc(bool,l);		for(i=0;i<l;i++)			nonzero[i] = false;	if (param->svm_type == C_SVC)	{			// train n*(n-1)/2 models				decision_function *f = Malloc(decision_function,nr_class*(nr_class-1)/2);		int p = 0;		for(i=0;i<nr_class;i++)			for(int j=i+1;j<nr_class;j++)			{				svm_problem sub_prob;				int si = start[i], sj = start[j];				int ci = count[i], cj = count[j];				sub_prob.l = ci+cj;				sub_prob.n = prob->n;				sub_prob.x = Malloc(svm_node *,sub_prob.l);				sub_prob.y = Malloc(double,sub_prob.l);				int k;				for(k=0;k<ci;k++)				{					sub_prob.x[k] = x[si+k];					sub_prob.y[k] = +1;				}				for(k=0;k<cj;k++)				{					sub_prob.x[ci+k] = x[sj+k];					sub_prob.y[ci+k] = -1;				}								f[p] = svm_train_one(&sub_prob,param,weighted_C[i],weighted_C[j]);				for(k=0;k<ci;k++)					if(!nonzero[si+k] && fabs(f[p].alpha[k]) > 0)						nonzero[si+k] = true;				for(k=0;k<cj;k++)					if(!nonzero[sj+k] && fabs(f[p].alpha[ci+k]) > 0)						nonzero[sj+k] = true;				free(sub_prob.x);				free(sub_prob.y);				++p;			}		// build output		model->nr_class = nr_class;				model->label = Malloc(int,nr_class);		for(i=0;i<nr_class;i++)			model->label[i] = label[i];				int total_sv = 0;		int *nz_count = Malloc(int,nr_class);		model->nSV = Malloc(int,nr_class);		for(i=0;i<nr_class;i++)		{			int nSV = 0;			for(int j=0;j<count[i];j++)				if(nonzero[start[i]+j])				{						++nSV;					++total_sv;				}			model->nSV[i] = nSV;			nz_count[i] = nSV;		}				info("Total nSV = %d\n",total_sv);		model->l = total_sv;		model->SV = Malloc(svm_node *,total_sv);		p = 0;		for(i=0;i<l;i++)			if(nonzero[i]) model->SV[p++] = x[i];		int *nz_start = Malloc(int,nr_class);		nz_start[0] = 0;		for(i=1;i<nr_class;i++)			nz_start[i] = nz_start[i-1]+nz_count[i-1];		model->sv_coef = Malloc(double *,nr_class-1);		for(i=0;i<nr_class-1;i++)			model->sv_coef[i] = Malloc(double,total_sv);		p = 0;		for(i=0;i<nr_class;i++)			for(int j=i+1;j<nr_class;j++)			{				// classifier (i,j): coefficients with				// i are in sv_coef[j-1][nz_start[i]...],				// j are in sv_coef[i][nz_start[j]...]				int si = start[i];				int sj = start[j];				int ci = count[i];				int cj = count[j];								int q = nz_start[i];				int k;				for(k=0;k<ci;k++)					if(nonzero[si+k])						model->sv_coef[j-1][q++] = f[p].alpha[k];				q = nz_start[j];				for(k=0;k<cj;k++)					if(nonzero[sj+k])						model->sv_coef[i][q++] = f[p].alpha[ci+k];				++p;			}				for(i=0;i<nr_class*(nr_class-1)/2;i++)			free(f[i].alpha);		free(f);		free(nz_count);		free(nz_start);	}	else	{			svm_problem sub_prob;		sub_prob.l = l;		sub_prob.x = x;		sub_prob.y = new double[l];		for (i=0;i<nr_class;i++)			for (int j=start[i];j<start[i]+count[i];j++)				sub_prob.y[j] = i;		decision_function f;	if (param->svm_type == SPOC)	{				f = solve_spoc(&sub_prob,param,nr_class,weighted_C);		delete[] sub_prob.y;				for (i=0;i<l;i++)			for (int j=0;j<nr_class;j++)				if (fabs(f.alpha[i*nr_class+j]) > 0)				{					nonzero[i] = true;					break;				}						model->nr_class = nr_class;		model->label = Malloc(int,nr_class);		for(i=0;i<nr_class;i++)			model->label[i] = label[i];				int total_sv = 0;		model->nSV = Malloc(int,nr_class);		for(i=0;i<nr_class;i++)		{			int nSV = 0;			for(int j=0;j<count[i];j++)				if(nonzero[start[i]+j])				{						++nSV;					++total_sv;				}			model->nSV[i] = nSV;		}				info("Total nSV = %d\n",total_sv);		model->l = total_sv;		model->SV = Malloc(svm_node *,total_sv);		int p = 0;		for(i=0;i<l;i++)			if(nonzero[i]) model->SV[p++] = x[i];						model->sv_coef = Malloc(double *,nr_class);		for(i=0;i<nr_class;i++)			model->sv_coef[i] = Malloc(double,total_sv);				p = 0;		for (i=0;i<l;i++)			if (nonzero[i])			{				for (int j=0;j<nr_class;j++)					model->sv_coef[j][p] = f.alpha[i*nr_class+j];				p++;			}				free(f.alpha);	}	else	if (param->svm_type == KBB)	{		f = solve_msvm(&sub_prob,param,nr_class,weighted_C,count);		delete[] sub_prob.y;		int *start2 = Malloc(int, nr_class), k;		start2[0] = 0;		for (i=1;i<nr_class;i++)			start2[i] = start2[i-1] + l - count[i-1];			for (i=0;i<nr_class;i++)			for (int j=start[i];j<start[i]+count[i];j++)			{				for (k=0;k<i;k++)					if (f.alpha[start2[k]+j-count[k]] > 0)					{						nonzero[j] = true;						k = nr_class;					}				for (k++;k<nr_class;k++)					if (f.alpha[start2[k]+j] > 0)					{						nonzero[j] = true;						break;					}			}		model->nr_class = nr_class;		model->label = Malloc(int,nr_class);		for(i=0;i<nr_class;i++)			model->label[i] = label[i];				int total_sv = 0;		model->nSV = Malloc(int,nr_class);		for(i=0;i<nr_class;i++)		{			int nSV = 0;			for(int j=0;j<count[i];j++)				if(nonzero[start[i]+j])				{						++nSV;					++total_sv;				}			model->nSV[i] = nSV;		}				info("Total nSV = %d\n",total_sv);		model->l = total_sv;		model->SV = Malloc(svm_node *,total_sv);		int p = 0;		for(i=0;i<l;i++)			if(nonzero[i]) model->SV[p++] = x[i];		model->sv_coef = Malloc(double *,nr_class-1);		for(i=0;i<nr_class-1;i++)			model->sv_coef[i] = Malloc(double,total_sv);				p = 0;		for (i=0;i<nr_class;i++)			for (int j=start[i];j<start[i]+count[i];j++)				if (nonzero[j])				{					for (k=0;k<i;k++)						model->sv_coef[k][p] = f.alpha[start2[k]+j-count[k]];					for (k++;k<nr_class;k++)						model->sv_coef[k-1][p] = f.alpha[start2[k]+j];					p++;				}		free(start2);		free(f.alpha);			}	}		free(label);		free(count);		free(index);		free(start);		free(weighted_C);		free(x);		free(nonzero);	}	return model;}double svm_predict(const svm_model *model, const svm_node *x){	if (model->param.svm_type == EPSILON_SVR)	{		double *sv_coef = model->sv_coef[0];		double sum = 0;		for(int i=0;i<model->l;i++)			sum += sv_coef[i] * (Kernel::k_function(x,model->SV[i],model->param) + 1);		return sum;	}	else	if (model->param.svm_type == C_SVC)	{				int i;		int nr_class = model->nr_class;		int l = model->l;				double *kvalue = Malloc(double,l);		for(i=0;i<l;i++)			kvalue[i] = Kernel::k_function(x,model->SV[i],model->param) + 1;		int *start = Malloc(int,nr_class);		start[0] = 0;		for(i=1;i<nr_class;i++)			start[i] = start[i-1]+model->nSV[i-1];		int *vote = Malloc(int,nr_class);		for(i=0;i<nr_class;i++)			vote[i] = 0;				for(i=0;i<nr_class;i++)			for(int j=i+1;j<nr_class;j++)			{				double sum = 0;				int si = start[i];				int sj = start[j];				int ci = model->nSV[i];				int cj = model->nSV[j];								int k;				double *coef1 = model->sv_coef[j-1];				double *coef2 = model->sv_coef[i];				for(k=0;k<ci;k++)					sum += coef1[si+k] * kvalue[si+k];				for(k=0;k<cj;k++)					sum += coef2[sj+k] * kvalue[sj+k];				if(sum > 0)					++vote[i];				else					++vote[j];			}		int vote_max_idx = 0;		for(i=1;i<nr_class;i++)			if(vote[i] > vote[vote_max_idx])				vote_max_idx = i;		free(kvalue);		free(start);		free(vote);		return model->label[vote_max_idx];	}	else	if (model->param.svm_type == SPOC)	{		int i, j, l = model->l, nr_class = model->nr_class;				double *f = Malloc(double, nr_class);		for (i=0;i<nr_class;i++)			f[i] = 0;					for (i=0;i<l;i++)		{			double kv = Kernel::k_function(x, model->SV[i], model->param);			for (j=0;j<nr_class;j++)				f[j] += model->sv_coef[j][i]*kv;		}		j = 0;		for (i=1;i<nr_class;i++)			if (f[i] > f[j])				j = i;		free(f);		return model->label[j];	}	else	{		int i, j, k;		int nr_class = model->nr_class, m = nr_class - 1;		int l = model->l;		double *f = Malloc(double, nr_class);		for (i=0;i<nr_class;i++)			f[i] = 0;				double *A = Malloc(double, l);		for (i=0;i<l;i++)		{			A[i] = 0;			for (j=0;j<m;j++)				A[i] += model->sv_coef[j][i];		}		int *start = Malloc(int,nr_class);		start[0] = 0;		for(i=1;i<nr_class;i++)			start[i] = start[i-1]+model->nSV[i-1];		for (i=0;i<nr_class;i++)		{			int t = start[i] + model->nSV[i];			for (j=start[i];j<t;j++)			{				double kv = Kernel::k_function(x,model->SV[j], model->param) + 1;				for (k=0;k<i;k++)					f[k] -= model->sv_coef[k][j]*kv;				f[i] += A[j]*kv;				for (;k<m;k++)					f[k+1] -= model->sv_coef[k][j]*kv;			}		}		j = 0;		for (i=1;i<nr_class;i++)			if (f[i] > f[j])				j = i;		free(A);		free(f);		return model->label[j];	}}const char *svm_type_table[] ={	"c_svc","kbb","spoc","epsilon_svr",NULL};const char *kernel_type_table[]={	"linear","polynomial","rbf","sigmoid",NULL};int svm_save_model(const char *model_file_name, const svm_model *model){	FILE *fp = fopen(model_file_name,"w");	if(fp==NULL) return -1;	const svm_parameter& param = model->param;	fprintf(fp,"svm_type %s\n", svm_type_table[param.svm_type]);	fprintf(fp,"kernel_type %s\n", kernel_type_table[param.kernel_type]);	if(param.kernel_type == POLY)		fprintf(fp,"degree %g\n", param.degree);	if(param.kernel_type == POLY || param.kernel_type == RBF || param.kernel_type == SIGMOID)		fprintf(fp,"gamma %g\n", param.gamma);	if(param.kernel_type == POLY || param.kernel_type == SIGMOID)		fprintf(fp,"coef0 %g\n", param.coef0);	int nr_class = model->nr_class;	int l = model->l;	fprintf(fp, "nr_class %d\n", nr_class);	fprintf(fp, "total_sv %d\n",l);		if(model->label)	{		fprintf(fp, "label");		for(int i=0;i<nr_class;i++)			fprintf(fp," %d",model->label[i]);		fprintf(fp, "\n");	}	if(model->nSV)	{		fprintf(fp, "nr_sv");		for(int i=0;i<nr_class;i++)			fprintf(fp," %d",model->nSV[i]);		fprintf(fp, "\n");	}	fprintf(fp, "SV\n");	const double * const *sv_coef = model->sv_coef;	const svm_node * const *SV = model->SV;	for(int i=0;i<l;i++)	{		if (model->param.svm_type == SPOC)			for(int j=0;j<nr_class;j++)				fprintf(fp, "%.16g ",sv_coef[j][i]);		else			for(int j=0;j<nr_class-1;j++)				fprintf(fp, "%.16g ",sv_coef[j][i]);		const svm_node *p = SV[i];		while(p->index != -1)		{			fprintf(fp,"%d:%.8g ",p->index,p->value);			p++;		}		fprintf(fp, "\n");	}	fclose(fp);	return 0;}svm_model *svm_load_model(const char *model_file_name){	FILE *fp = fopen(model_file_name,"rb");	if(fp==NULL) return NULL;		// read parameters	svm_model *model = Malloc(svm_model,1);	svm_parameter& param = model->param;	model->label = NULL;	model->nSV = NULL;	char cmd[81];	while(1)	{		fscanf(fp,"%80s",cmd);		if(strcmp(cmd,"svm_type")==0)		{			fscanf(fp,"%80s",cmd);			int i;			for(i=0;svm_type_table[i];i++)			{				if(strcmp(svm_type_table[i],cmd)==0)				{					param.svm_type=i;					break;				}			}			if(svm_type_table[i] == NULL)			{				fprintf(stderr,"unknown svm type.\n");				free(model->label);				free(model->nSV);				free(model);				return NULL;			}		}		else if(strcmp(cmd,"kernel_type")==0)		{					fscanf(fp,"%80s",cmd);			int i;			for(i=0;kernel_type_table[i];i++)			{				if(strcmp(kernel_type_table[i],cmd)==0)				{					param.kernel_type=i;					break;				}			}			if(kernel_type_table[i] == NULL)			{				fprintf(stderr,"unknown kernel function.\n");				free(model->label);				free(model->nSV);				free(model);				return NULL;			}		}		else if(strcmp(cmd,"degree")==0)			fscanf(fp,"%lf",&param.degree);		else if(strcmp(cmd,"gamma")==0)			fscanf(fp,"%lf",&param.gamma);		else if(strcmp(cmd,"coef0")==0)			fscanf(fp,"%lf",&param.coef0);		else if(strcmp(cmd,"nr_class")==0)			fscanf(fp,"%d",&model->nr_class);		else if(strcmp(cmd,"total_sv")==0)			fscanf(fp,"%d",&model->l);		else if(strcmp(cmd,"label")==0)		{			int n = model->nr_class;			model->label = Malloc(int,n);			for(int i=0;i<n;i++)				fscanf(fp,"%d",&model->label[i]);		}		else if(strcmp(cmd,"nr_sv")==0)		{			int n = model->nr_class;			model->nSV = Malloc(int,n);			for(int i=0;i<n;i++)				fscanf(fp,"%d",&model->nSV[i]);		}		else if(strcmp(cmd,"SV")==0)		{			while(1)			{				int c = getc(fp);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -