⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dgemv.c

📁 svm的实现源码
💻 C
字号:
#include "blas.h"int dgemv_(char *trans, int *m, int *n, double *alpha, double *a,           int *lda, double *x, int *incx, double *beta, double *y,            int *incy){  int info;  double temp, *pa, aalpha, bbeta;  long lenx, leny, i, j, dima, mm, nn, iincx, iincy;  long ix, iy, jx, jy, kx, ky;  blasbool notrans;  /* Dependencies */  extern int xerbla_(char *, int *);/*  Purpose       =======       DGEMV  performs one of the matrix-vector operations          y := alpha*A*x + beta*y,   or   y := alpha*A'*x + beta*y,       where alpha and beta are scalars, x and y are vectors and A is an       m by n matrix.       Parameters       ==========       TRANS  - CHARACTER*1.                On entry, TRANS specifies the operation to be performed as                follows:                   TRANS = 'N' or 'n'   y := alpha*A*x + beta*y.                   TRANS = 'T' or 't'   y := alpha*A'*x + beta*y.                   TRANS = 'C' or 'c'   y := alpha*A'*x + beta*y.                Unchanged on exit.       M      - INTEGER.                On entry, M specifies the number of rows of the matrix A.                M must be at least zero.                Unchanged on exit.       N      - INTEGER.                On entry, N specifies the number of columns of the matrix A.                N must be at least zero.                Unchanged on exit.       ALPHA  - DOUBLE PRECISION.                On entry, ALPHA specifies the scalar alpha.                Unchanged on exit.       A      - DOUBLE PRECISION array of DIMENSION ( LDA, n ).                Before entry, the leading m by n part of the array A must                contain the matrix of coefficients.                Unchanged on exit.       LDA    - INTEGER.                On entry, LDA specifies the first dimension of A as declared              in the calling (sub) program. LDA must be at least                max( 1, m ).                Unchanged on exit.       X      - DOUBLE PRECISION array of DIMENSION at least                ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'                and at least                ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.                Before entry, the incremented array X must contain the                vector x.                Unchanged on exit.       INCX   - INTEGER.                On entry, INCX specifies the increment for the elements of                X. INCX must not be zero.                Unchanged on exit.       BETA   - DOUBLE PRECISION.                On entry, BETA specifies the scalar beta. When BETA is                supplied as zero then Y need not be set on input.                Unchanged on exit.       Y      - DOUBLE PRECISION array of DIMENSION at least                ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'                and at least                ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.                Before entry with BETA non-zero, the incremented array Y                must contain the vector y. On exit, Y is overwritten by the              updated vector y.       INCY   - INTEGER.                On entry, INCY specifies the increment for the elements of                Y. INCY must not be zero.                Unchanged on exit.       Level 2 Blas routine.       -- Written on 22-October-1986.          Jack Dongarra, Argonne National Lab.          Jeremy Du Croz, Nag Central Office.          Sven Hammarling, Nag Central Office.          Richard Hanson, Sandia National Labs.   */  /* Dereference inputs */  nn = *n;  mm = *m;  dima = *lda;  aalpha = *alpha;  bbeta = *beta;  iincx = *incx;  iincy = *incy;  info = 0;  switch( *trans )  {    case 'N':    case 'n':      notrans = TRUE;      break;    case 'T':    case 't':    case 'C':    case 'c':      notrans = FALSE;      break;    default:      notrans = TRUE;      info = 1;  }  if( info == 0 )  {    if (mm < 0) {      info = 2;    } else if (nn < 0) {      info = 3;    } else if (dima < MAX(1,mm)) {      info = 6;    } else if (iincx == 0) {      info = 8;    } else if (iincy == 0) {      info = 11;    }  }  if (info != 0)  {    xerbla_("DGEMV ", &info);    return 0;  }  /* Quick return if possible. */  if (mm != 0 && nn != 0 && (aalpha != 0.0 || bbeta != 1.0))  {    /* Set  LENX  and  LENY, the lengths of the vectors x and y, and set        up the start points in  X  and  Y. */    if (notrans)    {      lenx = nn;      leny = mm;    }    else    {      lenx = mm;      leny = nn;    }    kx = iincx > 0 ? 0 : (1 - lenx) * iincx;    ky = iincy > 0 ? 0 : (1 - leny) * iincy;    /* Start the operations. In this version the elements of A are          accessed sequentially with one pass through A. */    /* First form  y := beta*y. */    if (bbeta != 1.0)    {      if (iincy == 1)      {        if (bbeta == 0.0)        {          for (i = 0; i < leny; ++i)            y[i] = 0.0;        }        else  /* bbeta != 0.0 */        {          for (i = 0; i < leny; ++i)            y[i] = bbeta * y[i];        }      }      else  /* iincy != 1 */      {        iy = ky;        if (bbeta == 0.0)        {          for (i = 0; i < leny; ++i)          {            y[iy] = 0.0;            iy += iincy;          }        }        else  /* bbeta != 0.0 */        {          for (i = 0; i < leny; ++i)          {            y[iy] = bbeta * y[iy];            iy += iincy;          }        }      }    }    if (aalpha != 0.0)    {      if (notrans) /* Form  y := alpha*A*x + y. */      {        jx = kx;        if (iincy == 1)        {          for (pa=a, j = 0; j < nn; ++j, pa+=dima)          {            if (x[jx] != 0.0)            {              temp = aalpha * x[jx];              for (i = 0; i < mm; ++i)                y[i] += temp * pa[i];  /* y[i] += temp * A(i,j); */            }            jx += iincx;          }        }        else        {          for (pa=a, j = 0; j < nn; ++j, pa+=dima)          {            if (x[jx] != 0.0)            {              temp = aalpha * x[jx];              iy = ky;              for (i = 0; i < mm; ++i)              {                y[iy] += temp * pa[i];  /* y[iy] += temp * A(i,j); */                iy += iincy;              }            }            jx += iincx;          }        }      }      else /* Form  y := alpha*A'*x + y. */      {        jy = ky;        if (iincx == 1)        {          for (pa=a, j = 0; j < nn; ++j, pa+=dima)          {            temp = 0.0;            for (i = 0; i < mm; ++i)              temp += pa[i] * x[i];  /* temp += A(i,j) * x[i]; */            y[jy] += aalpha * temp;            jy += iincy;          }        }        else        {          for (pa=a, j = 0; j < nn; ++j, pa+=dima)          {            temp = 0.0;            ix = kx;            for (i = 0; i < mm; ++i)            {              temp += pa[i] * x[ix];  /* temp += A(i,j) * x[ix]; */              ix += iincx;            }            y[jy] += aalpha * temp;            jy += iincy;          }        }      }    }  }  return 0;} /* dgemv_ */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -