⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dpotf2.c

📁 svm的实现源码
💻 C
字号:
/* dpotf2.f -- translated by f2c (version 20000121).   You must link the resulting object file with the libraries:	-lf2c -lm   (in that order)*/#include "f2c.h"/* Table of constant values */static integer c__1 = 1;static doublereal c_b10 = -1.;static doublereal c_b12 = 1.;/* Subroutine */ int dpotf2_(char *uplo, integer *n, doublereal *a, integer *	lda, integer *info, ftnlen uplo_len){    /* System generated locals */    integer a_dim1, a_offset, i__1, i__2, i__3;    doublereal d__1;    /* Builtin functions */    double sqrt(doublereal);    /* Local variables */    extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, 	    integer *);    integer j;    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 	    integer *);    extern logical lsame_(char *, char *, ftnlen, ftnlen);    extern /* Subroutine */ int dgemv_(char *, integer *, integer *, 	    doublereal *, doublereal *, integer *, doublereal *, integer *, 	    doublereal *, doublereal *, integer *, ftnlen);    logical upper;    extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);    doublereal ajj;/*  -- LAPACK routine (version 3.0) -- *//*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., *//*     Courant Institute, Argonne National Lab, and Rice University *//*     February 29, 1992 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DPOTF2 computes the Cholesky factorization of a real symmetric *//*  positive definite matrix A. *//*  The factorization has the form *//*     A = U' * U ,  if UPLO = 'U', or *//*     A = L  * L',  if UPLO = 'L', *//*  where U is an upper triangular matrix and L is lower triangular. *//*  This is the unblocked version of the algorithm, calling Level 2 BLAS. *//*  Arguments *//*  ========= *//*  UPLO    (input) CHARACTER*1 *//*          Specifies whether the upper or lower triangular part of the *//*          symmetric matrix A is stored. *//*          = 'U':  Upper triangular *//*          = 'L':  Lower triangular *//*  N       (input) INTEGER *//*          The order of the matrix A.  N >= 0. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) *//*          On entry, the symmetric matrix A.  If UPLO = 'U', the leading *//*          n by n upper triangular part of A contains the upper *//*          triangular part of the matrix A, and the strictly lower *//*          triangular part of A is not referenced.  If UPLO = 'L', the *//*          leading n by n lower triangular part of A contains the lower *//*          triangular part of the matrix A, and the strictly upper *//*          triangular part of A is not referenced. *//*          On exit, if INFO = 0, the factor U or L from the Cholesky *//*          factorization A = U'*U  or A = L*L'. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A.  LDA >= max(1,N). *//*  INFO    (output) INTEGER *//*          = 0: successful exit *//*          < 0: if INFO = -k, the k-th argument had an illegal value *//*          > 0: if INFO = k, the leading minor of order k is not *//*               positive definite, and the factorization could not be *//*               completed. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1 * 1;    a -= a_offset;    /* Function Body */    *info = 0;    upper = lsame_(uplo, "U", (ftnlen)1, (ftnlen)1);    if (! upper && ! lsame_(uplo, "L", (ftnlen)1, (ftnlen)1)) {	*info = -1;    } else if (*n < 0) {	*info = -2;    } else if (*lda < max(1,*n)) {	*info = -4;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DPOTF2", &i__1, (ftnlen)6);	return 0;    }/*     Quick return if possible */    if (*n == 0) {	return 0;    }    if (upper) {/*        Compute the Cholesky factorization A = U'*U. */	i__1 = *n;	for (j = 1; j <= i__1; ++j) {/*           Compute U(J,J) and test for non-positive-definiteness. */	    i__2 = j - 1;	    ajj = a[j + j * a_dim1] - ddot_(&i__2, &a[j * a_dim1 + 1], &c__1, 		    &a[j * a_dim1 + 1], &c__1);	    if (ajj <= 0.) {		a[j + j * a_dim1] = ajj;		goto L30;	    }	    ajj = sqrt(ajj);	    a[j + j * a_dim1] = ajj;/*           Compute elements J+1:N of row J. */	    if (j < *n) {		i__2 = j - 1;		i__3 = *n - j;		dgemv_("Transpose", &i__2, &i__3, &c_b10, &a[(j + 1) * a_dim1 			+ 1], lda, &a[j * a_dim1 + 1], &c__1, &c_b12, &a[j + (			j + 1) * a_dim1], lda, (ftnlen)9);		i__2 = *n - j;		d__1 = 1. / ajj;		dscal_(&i__2, &d__1, &a[j + (j + 1) * a_dim1], lda);	    }/* L10: */	}    } else {/*        Compute the Cholesky factorization A = L*L'. */	i__1 = *n;	for (j = 1; j <= i__1; ++j) {/*           Compute L(J,J) and test for non-positive-definiteness. */	    i__2 = j - 1;	    ajj = a[j + j * a_dim1] - ddot_(&i__2, &a[j + a_dim1], lda, &a[j 		    + a_dim1], lda);	    if (ajj <= 0.) {		a[j + j * a_dim1] = ajj;		goto L30;	    }	    ajj = sqrt(ajj);	    a[j + j * a_dim1] = ajj;/*           Compute elements J+1:N of column J. */	    if (j < *n) {		i__2 = *n - j;		i__3 = j - 1;		dgemv_("No transpose", &i__2, &i__3, &c_b10, &a[j + 1 + 			a_dim1], lda, &a[j + a_dim1], lda, &c_b12, &a[j + 1 + 			j * a_dim1], &c__1, (ftnlen)12);		i__2 = *n - j;		d__1 = 1. / ajj;		dscal_(&i__2, &d__1, &a[j + 1 + j * a_dim1], &c__1);	    }/* L20: */	}    }    goto L40;L30:    *info = j;L40:    return 0;/*     End of DPOTF2 */} /* dpotf2_ */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -