⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dsymv.c

📁 svm的实现源码
💻 C
字号:
#include "blas.h"int dsymv_(char *uplo, int *n, double *alpha, double *a, int *lda,           double *x, int *incx, double *beta, double *y, int *incy){  long i, j, ix, iy, jx, jy, kx, ky;  int info;  double temp1, temp2;  blasbool upper;  /* pointers for testing */  double *pa;  /* Dereferenced input variables */  long nn, dima, iincx, iincy;  double aalpha, bbeta;  /* Dependencies */  extern int xerbla_(char *, int *);/*  Purpose       =======       DSYMV  performs the matrix-vector  operation          y := alpha*A*x + beta*y,       where alpha and beta are scalars, x and y are n element vectors and       A is an n by n symmetric matrix.       Parameters       ==========       UPLO   - CHARACTER*1.                On entry, UPLO specifies whether the upper or lower                triangular part of the array A is to be referenced as                follows:                   UPLO = 'U' or 'u'   Only the upper triangular part of A                                       is to be referenced.                   UPLO = 'L' or 'l'   Only the lower triangular part of A                                       is to be referenced.                Unchanged on exit.       N      - INTEGER.                On entry, N specifies the order of the matrix A.                N must be at least zero.                Unchanged on exit.       ALPHA  - DOUBLE PRECISION.                On entry, ALPHA specifies the scalar alpha.                Unchanged on exit.       A      - DOUBLE PRECISION array of DIMENSION ( LDA, n ).                Before entry with  UPLO = 'U' or 'u', the leading n by n                upper triangular part of the array A must contain the upper              triangular part of the symmetric matrix and the strictly                lower triangular part of A is not referenced.                Before entry with UPLO = 'L' or 'l', the leading n by n                lower triangular part of the array A must contain the lower              triangular part of the symmetric matrix and the strictly                upper triangular part of A is not referenced.                Unchanged on exit.       LDA    - INTEGER.                On entry, LDA specifies the first dimension of A as declared              in the calling (sub) program. LDA must be at least                max( 1, n ).                Unchanged on exit.       X      - DOUBLE PRECISION array of dimension at least                ( 1 + ( n - 1 )*abs( INCX ) ).                Before entry, the incremented array X must contain the n                element vector x.                Unchanged on exit.       INCX   - INTEGER.                On entry, INCX specifies the increment for the elements of                X. INCX must not be zero.                Unchanged on exit.       BETA   - DOUBLE PRECISION.                On entry, BETA specifies the scalar beta. When BETA is                supplied as zero then Y need not be set on input.                Unchanged on exit.       Y      - DOUBLE PRECISION array of dimension at least                ( 1 + ( n - 1 )*abs( INCY ) ).                Before entry, the incremented array Y must contain the n                element vector y. On exit, Y is overwritten by the updated                vector y.       INCY   - INTEGER.                On entry, INCY specifies the increment for the elements of                Y. INCY must not be zero.                Unchanged on exit.       Level 2 Blas routine.       -- Written on 22-October-1986.          Jack Dongarra, Argonne National Lab.          Jeremy Du Croz, Nag Central Office.          Sven Hammarling, Nag Central Office.          Richard Hanson, Sandia National Labs.   */  /* Dereference the inputs */  nn = *n;  dima = *lda;  iincx = *incx;  iincy = *incy;  aalpha = *alpha;  bbeta = *beta;  info = 0;  switch( *uplo )  {    case 'L':    case 'l':      upper = FALSE;      break;    case 'U':    case 'u':      upper = TRUE;      break;    default:      upper = FALSE;      info = 1;  }  if (info == 0)  {    if (nn < 0) {      info = 2;    } else if (dima < MAX(1,nn)) {      info = 5;    } else if (iincx == 0) {      info = 7;    } else if (iincy == 0) {      info = 10;    }  }  if (info != 0)  {    xerbla_("DSYMV ", &info);    return 0;  }  /* Quick return if possible. */  if (nn != 0 && (aalpha != 0.0 || bbeta != 1.0))  {    /* Set up the start points in  X  and  Y. */    if (iincx > 0)      kx = 0;    else      kx = (1 - nn) * iincx;    if (iincy > 0)      ky = 0;    else      ky = (1 - nn) * iincy;    /* Start the operations. In this version the elements of A are          accessed sequentially with one pass through the triangular part          of A. */    /* First form  y := beta*y. */    if (bbeta != 1.0)    {      if (iincy == 1)      {        if (bbeta == 0.0)        {          for (i = 0; i < nn; i++)            y[i] = 0.0;        }        else        {          for (i = 0; i < nn; i++)            y[i] = bbeta * y[i];        }      }      else      {        iy = ky;        if (bbeta == 0.0)        {          for (i=0; i<nn; i++, iy+=iincy)            y[iy] = 0.0;        }        else        {          for (i=0; i<nn; i++, iy+=iincy)            y[iy] = bbeta * y[iy];        }      }    }    if (aalpha != 0.0)    {      if (upper) /* Form  y  when A is stored in upper triangle. */      {        if (iincx == 1 && iincy == 1)        {          for (pa=a, j=0; j<nn; j++, pa+=dima)          {            temp1 = aalpha * x[j];            temp2 = 0.0;            for (i = 0; i < j; i++)            {              y[i] += temp1 * pa[i];              temp2 += pa[i] * x[i];            }            y[i] += temp1 * pa[i] + aalpha * temp2;          }        }        else        {          for (pa=a, jx=kx, jy=ky, j=0; j<nn; j++, pa+=dima, jx+=iincx, jy+=iincy)          {            temp1 = aalpha * x[jx];            temp2 = 0.0;            for (ix=kx, iy=ky, i=0; i<j; i++, ix+=iincx, iy+=iincy)            {              y[iy] += temp1 * pa[i];              temp2 += pa[i] * x[ix];            }            y[jy] += temp1 * pa[j] + aalpha * temp2;   /* ??? diff indices? */          }        }      }      else /* Form  y  when A is stored in lower triangle. */      {        if (iincx == 1 && iincy == 1)        {          for (pa=a, j=0; j<nn; j++, pa+=dima)          {            temp1 = aalpha * x[j];            temp2 = 0.0;            y[j] += temp1 * pa[j];            for (i=j+1; i<nn; i++)            {              y[i] += temp1 * pa[i];              temp2 += pa[i] * x[i];            }            y[j] += aalpha * temp2;          }        }        else        {          for (pa=a, jx=kx, jy=ky, j=0; j<nn; j++, jx+=iincx, jy+=iincy, pa+=dima)          {            temp1 = aalpha * x[jx];            temp2 = 0.0;            y[jy] += temp1 * pa[j];            for (ix=jx, iy=jy, i=j+1; i<nn; i++)            {              ix += iincx;              iy += iincy;              y[iy] += temp1 * pa[i];              temp2 += pa[i] * x[ix];            }            y[jy] += aalpha * temp2;          }        }      }    }  }  return 0;} /* dsymv_ */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -