📄 fourier.cpp
字号:
//
// Copyright 2005 Thomas C. McDermott, N5EG
// This file is part of VNAR - the Vector Network Analyzer program.
//
// VNAR is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// VNAR is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with VNAR, if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// TestFFT.pch will be the pre-compiled header
// stdafx.obj will contain the pre-compiled type information
#pragma once
#include "stdafx.h"
#include <math.h>
#define PI 3.1415926535897932384626433832795
// Fast Fourier Transform. length must be exactly 2^n.
// Inverse = true computes InverseFFT
// Inverse = false computes FFT.
// Overwrites the real and imaginary arrays in-place
void FFT(double real[], double imag[], int length, bool Inverse = false)
{
double wreal, wpreal, wimag, wpimag, theta;
double tempreal, tempimag, tempwreal, direction;
int Addr, Position, Mask, BitRevAddr, PairAddr;
int m, k;
direction = -1.0; // direction of rotating phasor for FFT
if(Inverse)
direction = 1.0; // direction of rotating phasor for IFFT
// bit-reverse the addresses of both the real and imaginary arrays
// real[0..length-1] and imag[0..length-1] are the paired complex numbers
for (Addr=0; Addr<length; Addr++)
{
// Derive Bit-Reversed Address
BitRevAddr = 0;
Position = length >> 1;
Mask = Addr;
while (Mask)
{
if(Mask & 1)
BitRevAddr += Position;
Mask >>= 1;
Position >>= 1;
}
if (BitRevAddr > Addr) // Swap
{
double s;
s = real[BitRevAddr]; // real part
real[BitRevAddr] = real[Addr];
real[Addr] = s;
s = imag[BitRevAddr]; // imaginary part
imag[BitRevAddr] = imag[Addr];
imag[Addr] = s;
}
}
// FFT, IFFT Kernel
for (k=1; k < length; k <<= 1)
{
theta = direction * PI / (double)k;
wpimag = sin(theta);
wpreal = cos(theta);
wreal = 1.0;
wimag = 0.0;
for (m=0; m < k; m++)
{
for (Addr = m; Addr < length; Addr += (k*2))
{
PairAddr = Addr + k;
tempreal = wreal * real[PairAddr] - wimag * imag[PairAddr];
tempimag = wreal * imag[PairAddr] + wimag * real[PairAddr];
real[PairAddr] = real[Addr] - tempreal;
imag[PairAddr] = imag[Addr] - tempimag;
real[Addr] += tempreal;
imag[Addr] += tempimag;
}
tempwreal = wreal;
wreal = wreal * wpreal - wimag * wpimag;
wimag = wimag * wpreal + tempwreal * wpimag;
}
}
if(Inverse) // Normalize the IFFT coefficients
for(int i=0; i<length; i++)
{
real[i] /= (double)length;
imag[i] /= (double)length;
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -