📄 geometry-doc.sgml
字号:
</para></listitem><listitem><para> <parameter>vectorVectorCoordinates</parameter>: …</para></listitem></itemizedlist></para></section><section id="plane"><title>Plane</title><para>A Plane has the following<link linkend="symbolic-class">symbolic properties</link>:<variablelist> <varlistentry> <term> <anchor id="plane-coordinate-type"> <parameter>coordinateType</parameter>: </term> <listitem> <para> the type of the plane coordinates: <parameter>vectorVectorPlane</parameter>, <parameter>abcdParameterPlane</parameter>, <parameter>lineLinePlane</parameter>, <parameter>pointNormalPlane</parameter>, etc. </para> </listitem> </varlistentry></variablelist>The corresponding numeric coordinate representations are:<itemizedlist><listitem><para> <parameter>vectorVectorPlane</parameter>: …</para></listitem><listitem><para> <parameter>abcdParameterPlane</parameter>: …</para></listitem><listitem><para> <parameter>lineLinePlane</parameter>: …</para></listitem><listitem><para> <parameter>pointNormalPlane</parameter>: …</para></listitem></itemizedlist></para></section><section id="polyhedron"><title>Polyhedron</title><para>This is a planar geometric primitive, consisting of an ordered list of<emphasis>vertices</emphasis>. Since the vertices all lie in the sameplane, an obvious representation consists of a plane, with 2D coordinatesof the vertices in that plane.</para></section><section id="mesh"><title>Mesh</title><para>This is a non-planar geometric primitive, consisting of a connectedset of <emphasis>vertices</emphasis>. Since the vertices form asurface the interconnection graph is <emphasis>planar</emphasis>.(TODO Is this true? Is this useful information?)</para></section><section id="screw"><title>Screw</title><para>A screw is the geometric object that combines <emphasis role="strong">two parallel vectors</emphasis>,(the first one is bound to a line, the second one is a free vector), with a <emphasis role="strong">scalar number</emphasis> (the“pitch”) which is the ratio of the two vectors.Screws are the geometric primitives behind rigid body velocity andforce.<variablelist><title>Symbolic properties</title> <varlistentry> <term> <anchor id="screw-coordinate-type"> <parameter>coordinateType</parameter>: </term> <listitem> <para> the type of the screw <link linkend="screw-coordinates">coordinates</link>: <parameter>PluckerAxisCoordinates</parameter>, <parameter>PluckerRayCoordinates</parameter>, <parameter>pointVectorCoordinates</parameter>, <parameter>vectorVectorCoordinates</parameter>, etc. </para> </listitem> </varlistentry> <varlistentry> <term> <anchor id="pitch-units"> <parameter>pitchPhysicalUnits</parameter> </term> <listitem> <para>A pitch has the physical units of <emphasis>distance</emphasis>. </para> </listitem> </varlistentry></variablelist><variablelist><title>Physical properties</title> <varlistentry> <term><parameter>inversion</parameter></term> <listitem> <para> reversing the direction of both vectors. </para> </listitem> </varlistentry> <varlistentry> <term> <anchor id="screw-product"> <parameter>product</parameter> </term> <listitem> <para> The (“vector”, “screw”) product of two screws is again a screw. </para> </listitem> </varlistentry></variablelist><variablelist><title>Numeric coordinate represenations:</title> <varlistentry> <term> <anchor id="pitch-coordinate"> <parameter>pitch</parameter> </term> <listitem> <para>numeric value of the pitch (which can have the value“infinity”!). </para> </listitem> </varlistentry> <varlistentry> <term> <anchor id="screw-coordinates"> <parameter>coordinates</parameter>: </term> <listitem> <para>Very similar to the six-dimensional coordinates of a<link linkend="line">Line</link>, but in this case of a Screw,<emphasis>five</emphasis> of the six numbers are independentcoordinates. (A <link linkend="line">Line</link> only has fourindependent coordinates.) </para> </listitem> </varlistentry></variablelist></para></section><section id="orientation"><title>Orientation</title><para>An orientation is an (choice of) <emphasis>sign</emphasis>attached to some geometric objects.</para><para><variablelist><title>Symbolic properties</title> <varlistentry> <term> <anchor id="orientation-type"> <parameter>type</parameter>: </term> <listitem> <para> In 1D, orientation is <parameter>left</parameter> or <parameter>right</parameter>; in 2D, orientation is <parameter>clockwise</parameter> or <parameter>counter-clockwise</parameter>; in 3D, orientation is <parameter>positive</parameter> or <parameter>negative</parameter> (or, <parameter>right-handed</parameter> or <parameter>left-handed</parameter>). </para> </listitem> </varlistentry></variablelist><variablelist><title>Physical properties</title> <varlistentry> <term><parameter>inversion</parameter></term> <listitem> <para> Reversing the <link linkend="orientation-type">type</link> of the orientation. </para> </listitem> </varlistentry> <varlistentry> <term> <anchor id="orientation-product"> <parameter>product</parameter> </term> <listitem> <para>The product of two orientations with opposite type is“negative”, the product of orientations of the same typeis “positive”. </para> </listitem> </varlistentry></variablelist></para></section><section id="rotation"><title>Rotation</title><para>Consider the same rigid body in two different configurations, in which(at least) one (“fixed”) point connected to the bodyremains in the same position in space. Then, one can prove that thereexists a <link linkend="line">Line</link> through that point such thatthe first body can be rotated about the line and moved to coincidewith the second body. In 1D, this Rotation is trivial: the rigid bodyis a subset of the 1D line, and it is “mirrored” on theline about the point, or it remains in the same place.In 2D (<emphasis>i.e.</emphasis> a plane), the rotation line isperpendicular to the plane, and goes through the fixed point of thebody. In 3D, the line can have any direction in space. Note also that,in 2D and 3D, there are in general always two of these rotations(“clockwise” and “counter-clockwise”, aboutthe same line), whose rotation angles add up (in absolute value) to360 degrees.</para><para>Note that the fixed point must not necessarily be physically locatedon the rigid body itself: it can be a point outside of the body, thatmoves rigidly together with the body.</para><para>A Rotation can be given two meanings:<itemizedlist><listitem><para><emphasis role="strong">Active</emphasis>:the <emphasis role="strong">motion</emphasis> of a rigid bodyfrom a first configuration to a second configuration. (With theconstraint that at least one point remains “motionless”!)</para></listitem><listitem><para><emphasis role="strong">Passive</emphasis>:the position of a <emphasis>reference frame</emphasis> onthe rigid body with respect to a<emphasis>fixed world reference frame</emphasis> at the origin of theworld.</para></listitem></itemizedlist>Only the passive interpretation<emphasis role="strong">requires</emphasis> the choice of onereference frame on the object, and another reference frame in theworld; and the given orientation depends on this choice. So, passive Rotation is not a <link linkend="physical-properties">physical property</link> but aproperty of the choice of coordinates. The active interpretation,however, <emphasis>is</emphasis> physically well defined,independently of any arbitrary choices.</para><para>So, the following properties are required to define a Rotation:</para><variablelist><title>Symbolic property</title> <varlistentry> <term><parameter>active</parameter>, <parameter>passive</parameter></term> <listitem> <para>Only in the case of a <parameter>passive</parameter> Orientation, thegeneric <link linkend="symbolic-class">symbolic information</link>about the <link linkend="geometric-port">geometric Port</link> tothe reference <link linkend="frame">frame</link> is relevant. </para> </listitem> </varlistentry></variablelist><variablelist><title>Physical properties</title> <varlistentry> <term><parameter>inversion</parameter></term> <listitem> <para>The inversion of a given Rotation is another Rotation. The rotationline is the same, and the rotation angle is the inverse of theoriginal angle. Or, equivalently, the direction fo the rotation lineis reversed. </para> </listitem> </varlistentry> <varlistentry> <term> <anchor id="orientation-composition"> <parameter>composition</parameter> </term> <listitem> <para>The composition of two Rotations is another Rotation.<note><para>The composition of Rotation is a<emphasis role="strong">multiplicative</emphasis> operation, and <emphasis role="strong">not additive</emphasis>,<emphasis>i.e.</emphasis> no coordinate representation exists in whichany composition corresponds to the addition of the rotationcoordinates of the two Rotations involved in the composition; whilethere do exist coordinate representations in which the compositioncorresponds to the multiplication of the coordinates. Note that theopposite is not true: not in every coordinate representation,composition corresponds to multiplication!</para></note> </para> </listitem> </varlistentry></variablelist><para>Many different<emphasis role="strong">coordinate respresentations</emphasis> existfor Rotations. For each of them, the composition operation is called<parameter>multiplication</parameter>, in accordance with the physicalproperties of Rotations. All coordinate representations depend on the<emphasis>choice</emphasis> of a reference frame on the object and inthe fixed world. Usually, right-handed and orthogonal reference framesare used, but this is not necessary; of course, the numerical valuesof the coordinates depend on this choice, so the frame objects shouldcontain this information among their symbolic properties.<variablelist> <varlistentry> <term> <anchor id="rotation-matrix"> <parameter>rotationMatrix</parameter></term> <listitem>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -