📄 pnt.java
字号:
throw new IllegalArgumentException("Matrix is not square");
boolean[] columns = new boolean[matrix.length];
for (int i = 0; i < matrix.length; i++) columns[i] = true;
try {return determinant(matrix, 0, columns);}
catch (ArrayIndexOutOfBoundsException e) {
throw new IllegalArgumentException("Matrix is wrong shape");
}
}
/**
* Compute the determinant of a submatrix specified by starting row
* and by "active" columns.
* @param matrix the matrix as an array of Pnts
* @param row the starting row
* @param columns a boolean array indicating the "active" columns
* @return the determinant of the specified submatrix
* @throws ArrayIndexOutOfBoundsException if dimensions are wrong
*/
private static double determinant(Pnt[] matrix, int row, boolean[] columns) {
if (row == matrix.length) return 1;
double sum = 0;
int sign = 1;
for (int col = 0; col < columns.length; col++) {
if (!columns[col]) continue;
columns[col] = false;
sum += sign * matrix[row].coordinates[col] *
determinant(matrix, row+1, columns);
columns[col] = true;
sign = -sign;
}
return sum;
}
/**
* Compute generalized cross-product of the rows of a matrix.
* The result is a Pnt perpendicular (as a vector) to each row of
* the matrix. This is not an efficient implementation, but should
* be adequate for low dimension.
* @param matrix the matrix of Pnts (one less row than the Pnt dimension)
* @return a Pnt perpendicular to each row Pnt
* @throws IllegalArgumentException if matrix is wrong shape
*/
public static Pnt cross (Pnt[] matrix) {
int len = matrix.length + 1;
if (len != matrix[0].dimension())
throw new IllegalArgumentException("Dimension mismatch");
boolean[] columns = new boolean[len];
for (int i = 0; i < len; i++) columns[i] = true;
double[] result = new double[len];
int sign = 1;
try {
for (int i = 0; i < len; i++) {
columns[i] = false;
result[i] = sign * determinant(matrix, 0, columns);
columns[i] = true;
sign = -sign;
}
} catch (ArrayIndexOutOfBoundsException e) {
throw new IllegalArgumentException("Matrix is wrong shape");
}
return new Pnt(result);
}
/* Pnts as simplices */
/**
* Determine the signed content (i.e., area or volume, etc.) of a simplex.
* @param simplex the simplex (as an array of Pnts)
* @return the signed content of the simplex
*/
public static double content (Pnt[] simplex) {
Pnt[] matrix = new Pnt[simplex.length];
for (int i = 0; i < matrix.length; i++)
matrix[i] = simplex[i].extend(new double[] {1});
int fact = 1;
for (int i = 1; i < matrix.length; i++) fact = fact*i;
return determinant(matrix) / fact;
}
/**
* Relation between this Pnt and a simplex (represented as an array of Pnts).
* Result is an array of signs, one for each vertex of the simplex, indicating
* the relation between the vertex, the vertex's opposite facet, and this
* Pnt. <pre>
* -1 means Pnt is on same side of facet
* 0 means Pnt is on the facet
* +1 means Pnt is on opposite side of facet</pre>
* @param simplex an array of Pnts representing a simplex
* @return an array of signs showing relation between this Pnt and the simplex
* @throws IllegalArgumentExcpetion if the simplex is degenerate
*/
public int[] relation (Pnt[] simplex) {
/* In 2D, we compute the cross of this matrix:
* 1 1 1 1
* p0 a0 b0 c0
* p1 a1 b1 c1
* where (a, b, c) is the simplex and p is this Pnt. The result
* is a vector in which the first coordinate is the signed area
* (all signed areas are off by the same constant factor) of
* the simplex and the remaining coordinates are the *negated*
* signed areas for the simplices in which p is substituted for
* each of the vertices. Analogous results occur in higher dimensions.
*/
int dim = simplex.length - 1;
if (this.dimension() != dim)
throw new IllegalArgumentException("Dimension mismatch");
/* Create and load the matrix */
Pnt[] matrix = new Pnt[dim+1];
/* First row */
double[] coords = new double[dim+2];
for (int j = 0; j < coords.length; j++) coords[j] = 1;
matrix[0] = new Pnt(coords);
/* Other rows */
for (int i = 0; i < dim; i++) {
coords[0] = this.coordinates[i];
for (int j = 0; j < simplex.length; j++)
coords[j+1] = simplex[j].coordinates[i];
matrix[i+1] = new Pnt(coords);
}
/* Compute and analyze the vector of areas/volumes/contents */
Pnt vector = cross(matrix);
double content = vector.coordinates[0];
int[] result = new int[dim+1];
for (int i = 0; i < result.length; i++) {
double value = vector.coordinates[i+1];
if (Math.abs(value) <= 1.0e-6 * Math.abs(content)) result[i] = 0;
else if (value < 0) result[i] = -1;
else result[i] = 1;
}
if (content < 0) {
for (int i = 0; i < result.length; i++) result[i] = -result[i];
}
if (content == 0) {
for (int i = 0; i < result.length; i++) result[i] = Math.abs(result[i]);
}
return result;
}
/**
* Test if this Pnt is outside of simplex.
* @param simplex the simplex (an array of Pnts)
* @return the simplex Pnt that "witnesses" outsideness (or null if not outside)
*/
public Pnt isOutside (Pnt[] simplex) {
int[] result = this.relation(simplex);
for (int i = 0; i < result.length; i++) {
if (result[i] > 0) return simplex[i];
}
return null;
}
/**
* Test if this Pnt is on a simplex.
* @param simplex the simplex (an array of Pnts)
* @return the simplex Pnt that "witnesses" on-ness (or null if not on)
*/
public Pnt isOn (Pnt[] simplex) {
int[] result = this.relation(simplex);
Pnt witness = null;
for (int i = 0; i < result.length; i++) {
if (result[i] == 0) witness = simplex[i];
else if (result[i] > 0) return null;
}
return witness;
}
/**
* Test if this Pnt is inside a simplex.
* @param simplex the simplex (an arary of Pnts)
* @return true iff this Pnt is inside simplex.
*/
public boolean isInside (Pnt[] simplex) {
int[] result = this.relation(simplex);
for (int i = 0; i < result.length; i++) if (result[i] >= 0) return false;
return true;
}
/**
* Test relation between this Pnt and circumcircle of a simplex.
* @param simplex the simplex (as an array of Pnts)
* @return -1, 0, or +1 for inside, on, or outside of circumcircle
*/
public int vsCircumcircle (Pnt[] simplex) {
Pnt[] matrix = new Pnt[simplex.length + 1];
for (int i = 0; i < simplex.length; i++)
matrix[i] = simplex[i].extend(new double[] {1, simplex[i].dot(simplex[i])});
matrix[simplex.length] = this.extend(new double[] {1, this.dot(this)});
double d = determinant(matrix);
int result = (d < 0)? -1 : ((d > 0)? +1 : 0);
if (content(simplex) < 0) result = - result;
return result;
}
/**
* Circumcenter of a simplex.
* @param simplex the simplex (as an array of Pnts)
* @return the circumcenter (a Pnt) of simplex
*/
public static Pnt circumcenter (Pnt[] simplex) {
int dim = simplex[0].dimension();
if (simplex.length - 1 != dim)
throw new IllegalArgumentException("Dimension mismatch");
Pnt[] matrix = new Pnt[dim];
for (int i = 0; i < dim; i++)
matrix[i] = simplex[i].bisector(simplex[i+1]);
Pnt hCenter = cross(matrix); // Center in homogeneous coordinates
double last = hCenter.coordinates[dim];
double[] result = new double[dim];
for (int i = 0; i < dim; i++) result[i] = hCenter.coordinates[i] / last;
return new Pnt(result);
}
/**
* Main program (used for testing).
*/
public static void main (String[] args) {
Pnt p = new Pnt(1, 2, 3);
System.out.println("Pnt created: " + p);
Pnt[] matrix1 = {new Pnt(1,2), new Pnt(3,4)};
Pnt[] matrix2 = {new Pnt(7,0,5), new Pnt(2,4,6), new Pnt(3,8,1)};
System.out.print("Results should be -2 and -288: ");
System.out.println(determinant(matrix1) + " " + determinant(matrix2));
Pnt p1 = new Pnt(1,1); Pnt p2 = new Pnt(-1,1);
System.out.println("Angle between " + p1 + " and " + p2 + ": " + p1.angle(p2));
System.out.println(p1 + " subtract " + p2 + ": " + p1.subtract(p2));
Pnt v0 = new Pnt(0,0), v1 = new Pnt(1,1), v2 = new Pnt(2,2);
Pnt[] vs = {v0, new Pnt(0,1), new Pnt(1,0)};
Pnt vp = new Pnt(.1, .1);
System.out.println(vp + " isInside " + toString(vs) + ": " + vp.isInside(vs));
System.out.println(v1 + " isInside " + toString(vs) + ": " + v1.isInside(vs));
System.out.println(vp + " vsCircumcircle " + toString(vs) + ": " +
vp.vsCircumcircle(vs));
System.out.println(v1 + " vsCircumcircle " + toString(vs) + ": " +
v1.vsCircumcircle(vs));
System.out.println(v2 + " vsCircumcircle " + toString(vs) + ": " +
v2.vsCircumcircle(vs));
System.out.println("Circumcenter of " + toString(vs) + " is " + circumcenter(vs));
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -