📄 grbf.m
字号:
% MATLAB implementation of global SOM-based RBF time series predictor.
%
% Based on the prediction method described in the following paper:
%
% Barreto, G.A. and Souza, L.G.M. (2006).
% "Adaptive filtering with the self-organizing map: A performance
% comparison", vol. 19, pp. 785-798.
%
% Author: Guilherme A. Barreto
% Date: September 28st 2006
clear; clc; close all;
%--------------- Organize the training data ------------
load train_series_data.dat; % Load the time series to be clustered
%% Building the input vectors from an univariate time series
p=5; % Dimension of the input vector (length of the time window)
lap=p-1; % Amount of overlapping between consecutive input vectors
Dw=buffer(train_series_data,p,lap); % Build the data vectors
if lap>0,
Dw=Dw(:,p:end)'; % Eliminate the first 'p-1' vectors with zeros)
else Dw=Dw';
end
Dw=fliplr(Dw);
Ynext=Dw(2:end,1); % Target (one-step-ahead) values
Dw=[Ynext Dw(1:end-1,:)]; % Input regressor vectors for Ynext
Dw=Dw+0.01*randn(size(Dw)); % Add some gaussian noise to the data
%-------------------------------------------------------
% SOM initialization and training
Mx = 16; % Number of neurons in the X-dimension
My = 1; % Number of neurons in the Y-dimension
msize = [Mx My]; % Size of 2-D SOM map
MASK=[0; ones(p,1)];
sMap = som_randinit(Dw, 'msize', msize,'lattice','rect','shape','sheet');
sMap = som_seqtrain(sMap,Dw,'radius',[floor(0.5*max(msize)) 0],'sample_order','random','neigh','gaussian','trainlen',50);
%--------------- Organize the testing data ------------
load test_series_data.dat; % Load testing time series
Dw=buffer(test_series_data,p,lap); % Build input data vectors
if lap>0,
Dw=Dw(:,p:end)'; % get rid of the first 'p-1' vectors with zeros
else Dw=Dw';
end
Dw=fliplr(Dw);
Ynext=Dw(2:end,1); % Target (one-step-ahead) values
Dw=[Ynext Dw(1:end-1,:)]; % Input regressor vectors for Ynext
Dw=Dw+0.01*randn(size(Dw)); % Add some gaussian noise to the data
%------------------------------------------------------
[LEN_DATA DIM_INPUT]=size(Dw); % Data matrix size (1 input vector per row)
G=[]; w=[];
s2=0.10; % Spread of the basis functions
for t=1:LEN_DATA,
for i=1:Mx*My,
act = norm(Dw(t,2:end)-sMap.codebook(i,2:end));
G(i) = exp(-act*act/(2*s2*s2)); % output of the i-th basis function
w(i) = sMap.codebook(i,1); % hidden-to-output layer weight
end
Yhat(t) = dot(w,G)/sum(G); % predicted value
error(t)=Ynext(t)-Yhat(t); % prediction error
end
% Plot target and predicted time series
figure; plot(Ynext,'r-'); hold on; plot(Yhat,'b-'); hold off
% Normalized mean squared error
NMSE=var(error)/var(Ynext)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -