📄 mainorthogonaltest.html
字号:
<TITLE>COG 2.1: Orthogonal coordinates</TITLE><H1>How to Create Orthogonal Coordinates</H1><H2>Why orthogonal coordinates?</H2> <P>While arbitrary coordinates may be used successfully, for example,for geometry description, and sometimes also for grid generation, theDelaunay grid generation algorithm often creates non-beautiful gridslike the following: <P><IMG SRC="wz2dnonconform.gif"> <P>if the coordinates are not orthogonal. The situation becomes evenworse if we want to use anisotropic refinement. In this case,non-orthogonal coordinates are often unusable.<H2>Definitions</H2> <P>We use <I>x,y,z</I> to denote the global coordinates (the image)and <I>u,v,w</I> for the local coordinates. The coordinatetransformation is defined by functions <I>x(u,v,w), y(u,v,w),z(u,v,w)</I>. <UL> <LI> Coordinates are <B>orthogonal</B> if they preserve the anglesbetween the coordinate axes. So the angle between the curves<I>u=const</I> resp. <I>v=const</I> is always 90 degree. <LI> Coordinates are <B>conformal</B> if they preserve other anglestoo. So the angle of the diagonal <I>u=v</I> with the axes<I>u=const</I> resp. <I>v=const</I> should be 45 degrees too. <LI> Coordinates are <B>rectangular</B> if they are of the simpletype <I>x=x(u), y=y(v), z=z(w)</I>. </UL><H2>Basic rules for composition</H2> <P><H3>conformal(conformal) is conformal</H3> <P>That means, conformal maps form a group.<H3>rectangular(rectangular) is rectangular</H3><p>That means, rectangular maps form a group too.<H3>conformal(orthogonal) is orthogonal</H3><H3>orthogonal(rectangular) is orthogonal</H3><H3></H3> <P>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -