📄 cp4s4f.m
字号:
function [he]=cp4s4f(ex,ey,ez,ep)% [he]=cp4s4f(ex,ey,ez,ep)%-----------------------------------------------------------% PURPOSE% Compute element coupling matrix between a 8 node % linear acoustic element and a 8 node linear solid element. %% INPUT: ex = [x1 x2 x3 x4] element coordinates% ey = [y1 y2 y3 y4]% ez = [z1 z2 z3 z4]% % ep = [ir] integration rule%% OUTPUT: he : element coupling matrix (12 x 4)%-------------------------------------------------------------% LAST MODIFIED: P Davidsson 1998-10-20% Copyright (c) Division of Structural Mechanics and% Department of Solid Mechanics.% Lund Institute of Technology%------------------------------------------------------------- ir=ep(1); ngp=ir*ir;% this section for rotating the surface to a local x-y-plane p2=[ ex(2)-ex(1); ey(2)-ey(1); ez(2)-ez(1) ]; p3=[ ex(3)-ex(1); ey(3)-ey(1); ez(3)-ez(1) ]; p4=[ ex(4)-ex(1); ey(4)-ey(1); ez(4)-ez(1) ]; L=sqrt(p2'*p2); n1=p2/L; L=sqrt(p4'*p4); v2=p4/L; n3=[n1(2)*v2(3)-v2(2)*n1(3); n1(3)*v2(1)-v2(3)*n1(1); n1(1)*v2(2)-v2(1)*n1(2)]; n3=n3/sqrt(n3'*n3); n2=[n3(2)*n1(3)-n1(2)*n3(3); n3(3)*n1(1)-n1(3)*n3(1); n3(1)*n1(2)-n1(1)*n3(2)]; An= [n1,n2,n3]; lp2=An'*p2; lp3=An'*p3; lp4=An'*p4; ec=[zeros(3,1),lp2,lp3,lp4]; lex=ec(1,:); ley=ec(2,:); G=[n3', zeros(1,9); zeros(1,3), n3', zeros(1,6); zeros(1,6), n3', zeros(1,3); zeros(1,9), n3']';% this section for rotating ... ends here if ir==1 g1=0.0; w1=2.0; gp=[ g1 g1 ]; w=[ w1 w1 ]; elseif ir==2 g1=0.577350269189626; w1=1; gp(:,1)=[-g1; g1;-g1; g1]; gp(:,2)=[-g1;-g1; g1; g1]; w(:,1)=[ w1; w1; w1; w1]; w(:,2)=[ w1; w1; w1; w1]; elseif ir==3 g1=0.774596699241483; g2=0.; w1=0.555555555555555; w2=0.888888888888888; gp(:,1)=[-g1;-g2; g1;-g1; g2; g1;-g1; g2; g1]; gp(:,2)=[-g1;-g1;-g1; g2; g2; g2; g1; g1; g1]; w(:,1)=[ w1; w2; w1; w1; w2; w1; w1; w2; w1]; w(:,2)=[ w1; w1; w1; w2; w2; w2; w1; w1; w1]; else disp('Used number of integration points not implemented'); return end wp=w(:,1).*w(:,2); xsi=gp(:,1); eta=gp(:,2); r2=ngp*2; N(:,1)=(1-xsi).*(1-eta)/4; N(:,2)=(1+xsi).*(1-eta)/4; N(:,3)=(1+xsi).*(1+eta)/4; N(:,4)=(1-xsi).*(1+eta)/4; dNr(1:2:r2,1)=-(1-eta)/4; dNr(1:2:r2,2)= (1-eta)/4; dNr(1:2:r2,3)= (1+eta)/4; dNr(1:2:r2,4)=-(1+eta)/4; dNr(2:2:r2+1,1)=-(1-xsi)/4; dNr(2:2:r2+1,2)=-(1+xsi)/4; dNr(2:2:r2+1,3)= (1+xsi)/4; dNr(2:2:r2+1,4)= (1-xsi)/4; he1=zeros(4,4); JT=dNr*[lex;ley]'; for i=1:ngp indx=[ 2*i-1; 2*i ]; detJ=det(JT(indx,:)); if detJ<10*eps disp('Jacobideterminanten lika med noll!') end JTinv=inv(JT(indx,:)); he1=he1+N(i,:)'*N(i,:)*detJ*wp(i); end he=G*he1;%--------------------------end--------------------------------
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -