📄 beam2w.m
字号:
function [Ke,fe]=beam2w(ex,ey,ep,eq)% Ke=beam2w(ex,ey,ep)% [Ke,fe]=beam2w(ex,ey,ep,eq)%-------------------------------------------------------------------------% PURPOSE% Compute the stiffness matrix for a two dimensional beam element % on elastic foundation.%% INPUT: ex = [x1 x2]% ey = [y1 y2] element node coordinates% % ep = [E A I ka kt] element properties;% E: Young's modulus% A: cross section area% I: moment of inertia% ka: axial foundation stiffness% kt: transversal found. stiffness%% eq = [qx qy] distributed loads (local directions)% % OUTPUT: Ke : beam stiffness matrix (6 x 6)%% fe : element load vector (6 x 1)%------------------------------------------------------------------------- % LAST MODIFIED: K Persson 1995-08-23% Copyright (c) Division of Structural Mechanics and% Department of Solid Mechanics.% Lund Institute of Technology%-------------------------------------------------------------------------- b=[ ex(2)-ex(1); ey(2)-ey(1) ]; L=sqrt(b'*b); n=b/L;% E=ep(1); A=ep(2); I=ep(3); ka=ep(4); kt=ep(5);% qx=0; qy=0; if nargin>3; qx=eq(1); qy=eq(2); end% K1 =[E*A/L 0 0 -E*A/L 0 0 ; 0 12*E*I/L^3 6*E*I/L^2 0 -12*E*I/L^3 6*E*I/L^2; 0 6*E*I/L^2 4*E*I/L 0 -6*E*I/L^2 2*E*I/L; -E*A/L 0 0 E*A/L 0 0 ; 0 -12*E*I/L^3 -6*E*I/L^2 0 12*E*I/L^3 -6*E*I/L^2; 0 6*E*I/L^2 2*E*I/L 0 -6*E*I/L^2 4*E*I/L];% K2=L/420*[140*ka 0 0 70*ka 0 0 ; 0 156*kt 22*kt*L 0 54*kt -13*kt*L ; 0 22*kt*L 4*kt*L^2 0 13*kt*L -3*kt*L^2; 70*ka 0 0 140*ka 0 0 ; 0 54*kt 13*kt*L 0 156*kt -22*kt*L ; 0 -13*kt*L -3*kt*L^2 0 -22*kt*L 4*kt*L^2];% Kle=K1+K2;% fle=L*[qx/2 qy/2 qy*L/12 qx/2 qy/2 -qy*L/12]';% G=[n(1) n(2) 0 0 0 0; -n(2) n(1) 0 0 0 0; 0 0 1 0 0 0; 0 0 0 n(1) n(2) 0; 0 0 0 -n(2) n(1) 0; 0 0 0 0 0 1];% Ke=G'*Kle*G; fe=G'*fle; %------------------------------------end-------------------------------------
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -