📄 plani8e.m
字号:
function [Ke,fe]=plani8e(ex,ey,ep,D,eq)% Ke=plani8e(ex,ey,ep,D)% [Ke,fe]=plani8e(ex,ey,ep,D,eq)%-------------------------------------------------------------% PURPOSE% Calculate the stiffness matrix for a 8 node isoparametric% element in plane strain or plane stress.%% INPUT: ex = [x1 ... x8] element coordinates% ey = [y1 ... y8]% % ep =[ptype t ir] ptype: analysis type% ir: integration rule% t : thickness%% D constitutive matrix%% eq = [bx; by] bx: body force in x direction% by: body force in y direction%% OUTPUT: Ke : element stiffness matrix (16 x 16)% fe : equivalent nodal forces (16 x 1)%-------------------------------------------------------------% LAST MODIFIED: M Ristinmaa 1995-10-25% Copyright (c) Division of Structural Mechanics and% Department of Solid Mechanics.% Lund Institute of Technology%------------------------------------------------------------- ptype=ep(1); t=ep(2); ir=ep(3); ngp=ir*ir; if nargin==4 b=zeros(2,1); else b=eq; end%--------- gauss points -------------------------------------- if ir==1 g1=0.0; w1=2.0; gp=[ g1 g1 ]; w=[ w1 w1 ]; elseif ir==2 g1=0.577350269189626; w1=1; gp(:,1)=[-g1; g1;-g1; g1]; gp(:,2)=[-g1;-g1; g1; g1]; w(:,1)=[ w1; w1; w1; w1]; w(:,2)=[ w1; w1; w1; w1]; elseif ir==3 g1=0.774596669241483; g2=0.; w1=0.555555555555555; w2=0.888888888888888; gp(:,1)=[-g1;-g2; g1;-g1; g2; g1;-g1; g2; g1]; gp(:,2)=[-g1;-g1;-g1; g2; g2; g2; g1; g1; g1]; w(:,1)=[ w1; w2; w1; w1; w2; w1; w1; w2; w1]; w(:,2)=[ w1; w1; w1; w2; w2; w2; w1; w1; w1]; else disp('Used number of integration points not implemented'); return end wp=w(:,1).*w(:,2); xsi=gp(:,1); eta=gp(:,2); r2=ngp*2;%--------- shape functions ----------------------------------- N(:,1)=-(1-xsi).*(1-eta).*(1+xsi+eta)/4; N(:,5)=(1-xsi.*xsi).*(1-eta)/2; N(:,2)=-(1+xsi).*(1-eta).*(1-xsi+eta)/4; N(:,6)=(1+xsi).*(1-eta.*eta)/2; N(:,3)=-(1+xsi).*(1+eta).*(1-xsi-eta)/4; N(:,7)=(1-xsi.*xsi).*(1+eta)/2; N(:,4)=-(1-xsi).*(1+eta).*(1+xsi-eta)/4; N(:,8)=(1-xsi).*(1-eta.*eta)/2; dNr(1:2:r2,1)=-(-(1-eta).*(1+xsi+eta)+(1-xsi).*(1-eta))/4; dNr(1:2:r2,2)=-( (1-eta).*(1-xsi+eta)-(1+xsi).*(1-eta))/4; dNr(1:2:r2,3)=-( (1+eta).*(1-xsi-eta)-(1+xsi).*(1+eta))/4; dNr(1:2:r2,4)=-(-(1+eta).*(1+xsi-eta)+(1-xsi).*(1+eta))/4; dNr(1:2:r2,5)=-xsi.*(1-eta); dNr(1:2:r2,6)=(1-eta.*eta)/2; dNr(1:2:r2,7)=-xsi.*(1+eta); dNr(1:2:r2,8)=-(1-eta.*eta)/2; dNr(2:2:r2+1,1)=-(-(1-xsi).*(1+xsi+eta)+(1-xsi).*(1-eta))/4; dNr(2:2:r2+1,2)=-(-(1+xsi).*(1-xsi+eta)+(1+xsi).*(1-eta))/4; dNr(2:2:r2+1,3)=-( (1+xsi).*(1-xsi-eta)-(1+xsi).*(1+eta))/4; dNr(2:2:r2+1,4)=-( (1-xsi).*(1+xsi-eta)-(1-xsi).*(1+eta))/4; dNr(2:2:r2+1,5)=-(1-xsi.*xsi)/2; dNr(2:2:r2+1,6)=-eta.*(1+xsi); dNr(2:2:r2+1,7)=(1-xsi.*xsi)/2; dNr(2:2:r2+1,8)=-eta.*(1-xsi); Ke=zeros(16,16); fe=zeros(16,1); JT=dNr*[ex;ey]';%--------- plane stress --------------------------------------if ptype==1 colD=size(D,2); if colD>3 Cm=inv(D); Dm=inv(Cm([1 2 4],[1 2 4])); else Dm=D; end for i=1:ngp indx=[ 2*i-1; 2*i ]; detJ=det(JT(indx,:)); if detJ<10*eps disp('Jacobideterminant equal or less than zero!') end JTinv=inv(JT(indx,:)); dNx=JTinv*dNr(indx,:); B(1,1:2:16-1)=dNx(1,:); B(2,2:2:16) =dNx(2,:); B(3,1:2:16-1)=dNx(2,:); B(3,2:2:16) =dNx(1,:); N2(1,1:2:16-1)=N(i,:); N2(2,2:2:16) =N(i,:); Ke=Ke+B'*Dm*B*detJ*wp(i)*t; fe=fe+N2'*b*detJ*wp(i)*t; end%--------- plane strain --------------------------------------elseif ptype==2 colD=size(D,2); if colD>3 Dm=D([1 2 4],[1 2 4]); else Dm=D; end for i=1:ngp indx=[ 2*i-1; 2*i ]; detJ=det(JT(indx,:)); if detJ<10*eps disp('Jacobideterminant equal or less than zero!') end JTinv=inv(JT(indx,:)); dNx=JTinv*dNr(indx,:); B(1,1:2:16-1)=dNx(1,:); B(2,2:2:16) =dNx(2,:); B(3,1:2:16-1)=dNx(2,:); B(3,2:2:16) =dNx(1,:); N2(1,1:2:16-1)=N(i,:); N2(2,2:2:16) =N(i,:); Ke=Ke+B'*Dm*B*detJ*wp(i)*t; fe=fe+N2'*b*detJ*wp(i)*t; end else error('Error ! Check first argument, ptype=1 or 2 allowed') returnend%--------------------------end--------------------------------
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -