📄 ritz.m
字号:
function [L,X]=ritz(K,M,f,m,b)% [L]=ritz(K,M,f,m)% [L]=ritz(K,M,f,m,b)% [L,X]=ritz(K,M,f,m)% [L,X]=ritz(K,M,f,m,b)%-------------------------------------------------------------% PURPOSE% Compute approximative eigenvalues and eigenvectors by% the Lanczos method.%% INPUT:% K : global stiffness matrix, dim(K)= nd x nd% M : global mass matrix, dim(M)= nd x nd% f : starting vector% m : number of approximative eigenvalues% b : boundary condition matrix dim(bc)= nb x 1% % OUTPUT:% L : approximative eigenvalues stored in a% vector with length (nd-nb) % X : approximative eigenvectors % dim(X)= nd x nfdof, nfdof : number of free dof's%-------------------------------------------------------------% LAST MODIFIED: H Carlsson 1993-09-21% Copyright (c) Division of Structural Mechanics and% Department of Solid Mechanics.% Lund Institute of Technology%-------------------------------------------------------------%[Q,T,beta_first,beta_res] = lan(K,M,f,m)% [nd,nd]=size(K); fdof=[1:nd]';% if nargin==5 pdof=b(:); fdof(pdof)=[]; [Qm,Tm,b_1,b_res] = lan(K(fdof,fdof),M(fdof,fdof),f(fdof),m); if nargout==2 [Sm,D]=eig(Tm); d=diag(D); d=1./d; [L,i]=sort(d); X1=Qm*Sm; X2=X1(:,i); X=zeros(nd,m); X(fdof,:)=X2; else d=eig(Tm); d=1./d; L=sort(d); end else [Qm,Tm,b_1,b_res] = lan(K,M,f,m); if nargout==2 [Sm,D]=eig(Tm); d=diag(D); d=1./d; [L,i]=sort(d); X1=Qm*Sm; X=X1(:,i); else d=eig(Tm); d=1./d; L=sort(d); end end%--------------------------end--------------------------------
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -