📄 plani4f.m
字号:
function [ef]=plani4f(ex,ey,ep,es)% ef=plani4f(ex,ey,ep,es)%-------------------------------------------------------------% PURPOSE% Calculate the element force vector corresponding to the % stresses in a 4 node isoparametric element.%% INPUT: ex = [x1 x2 x3 x4] element coordinates% ey = [y1 y2 y3 y4]% % ep = [ptype t ir] ptype: analysis type% ir: integration rule% t : thickness%% es = [ sigx sigy [sigz] tauxy element stress matrix% ...... ] one row for each integration point%% OUTPUT: fe = [f1 f2 ...f8]'; internal force vector%-------------------------------------------------------------% LAST MODIFIED: M Ristinmaa 1995-10-25% Copyright (c) Division of Structural Mechanics and% Department of Solid Mechanics.% Lund Institute of Technology%------------------------------------------------------------- ptype=ep(1); t=ep(2); ir=ep(3); ngp=ir*ir; %--------- gauss points -------------------------------------- if ir==1 g1=0.0; w1=2.0; gp=[ g1 g1 ]; w=[ w1 w1 ]; elseif ir==2 g1=0.577350269189626; w1=1; gp(:,1)=[-g1; g1;-g1; g1]; gp(:,2)=[-g1;-g1; g1; g1]; w(:,1)=[ w1; w1; w1; w1]; w(:,2)=[ w1; w1; w1; w1]; elseif ir==3 g1=0.774596669241483; g2=0.; w1=0.555555555555555; w2=0.888888888888888; gp(:,1)=[-g1;-g2; g1;-g1; g2; g1;-g1; g2; g1]; gp(:,2)=[-g1;-g1;-g1; g2; g2; g2; g1; g1; g1]; w(:,1)=[ w1; w2; w1; w1; w2; w1; w1; w2; w1]; w(:,2)=[ w1; w1; w1; w2; w2; w2; w1; w1; w1]; else disp('Used number of integration points not implemented'); return end wp=w(:,1).*w(:,2); xsi=gp(:,1); eta=gp(:,2); r2=ngp*2;%--------- shape functions ----------------------------------- N(:,1)=(1-xsi).*(1-eta)/4; N(:,2)=(1+xsi).*(1-eta)/4; N(:,3)=(1+xsi).*(1+eta)/4; N(:,4)=(1-xsi).*(1+eta)/4; dNr(1:2:r2,1)=-(1-eta)/4; dNr(1:2:r2,2)= (1-eta)/4; dNr(1:2:r2,3)= (1+eta)/4; dNr(1:2:r2,4)=-(1+eta)/4; dNr(2:2:r2+1,1)=-(1-xsi)/4; dNr(2:2:r2+1,2)=-(1+xsi)/4; dNr(2:2:r2+1,3)= (1+xsi)/4; dNr(2:2:r2+1,4)= (1-xsi)/4;%--------- plane stress --------------------------------------if ptype==1 [rowes,colD]=size(es); rowex=size(ex,1); if rowex==1 incie=0; else incie=1; end ef=[]; ir=0; ie=1; for ied=1:rowes/ngp JT=dNr*[ex(ie,:);ey(ie,:)]'; fint=zeros(8,1); for i=1:ngp ir=ir+1; indx=[ 2*i-1; 2*i ]; detJ=det(JT(indx,:)); if detJ<10*eps disp('Jacobideterminant equal or less than zero!') end JTinv=inv(JT(indx,:)); dNx=JTinv*dNr(indx,:); B(1,1:2:8-1)=dNx(1,:); B(2,2:2:8) =dNx(2,:); B(3,1:2:8-1)=dNx(2,:); B(3,2:2:8) =dNx(1,:); if colD>3 stress=es(ir,[1 2 4]); else stress=es(ir,:); end fint=fint+B'*stress'*wp(i)*detJ*t; end ef=[ef; fint']; ie=ie+incie; end %--------- plane strain --------------------------------------elseif ptype==2 [rowes,colD]=size(es); rowex=size(ex,1); if rowex==1 incie=0; else incie=1; end ef=[]; ir=0; ie=1; res=size(es,1); for ied=1:rowes/ngp JT=dNr*[ex(ie,:);ey(ie,:)]'; fint=zeros(8,1); for i=1:ngp ir=ir+1; indx=[ 2*i-1; 2*i ]; detJ=det(JT(indx,:)); if detJ<10*eps disp('Jacobideterminant equal or less than zero!') end JTinv=inv(JT(indx,:)); dNx=JTinv*dNr(indx,:); B(1,1:2:8-1)=dNx(1,:); B(2,2:2:8) =dNx(2,:); B(3,1:2:8-1)=dNx(2,:); B(3,2:2:8) =dNx(1,:); if colD>3 stress=es(ir,[1 2 4]); else stress=es(ir,:); end fint=fint+B'*stress'*wp(i)*detJ*t; end ef=[ef; fint']; ie=ie+incie; endelse error('Error ! Check first argument, ptype=1 or 2 allowed') returnend%--------------------------end--------------------------------
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -